202 research outputs found

    Minimal perturbations approaching the edge of chaos in a Couette flow

    Get PDF
    This paper provides an investigation of the structure of the stable manifold of the lower branch steady state for the plane Couette flow. Minimal energy perturbations to the laminar state are computed, which approach within a prescribed tolerance the lower branch steady state in a finite time. For small times, such minimal-energy perturbations maintain at least one of the symmetries characterizing the lower branch state. For a sufficiently large time horizon, such symmetries are broken and the minimal-energy perturbations on the stable manifold are formed by localized asymmetrical vortical structures. These minimal-energy perturbations could be employed to develop a control procedure aiming at stabilizing the low-dissipation lower branch state

    Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow

    Get PDF
    The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A variational procedure is used to find the blowing and suction control law at the wall providing the maximum damping of the energy of a given perturbation at a given target time, with the final aim of leading the flow back to the laminar state. Two optimally growing finite-amplitude initial perturbations capable of leading very rapidly to transition have been used to initialize the flow. The nonlinear control procedure has been found able to drive such perturbations back to the laminar state, provided that the target time of the minimization and the region in which the blowing and suction is applied have been suitably chosen. On the other hand, an equivalent control procedure based on the linearized Navier–Stokes equations has been found much less effective, being not able to lead the flow to the laminar state when finite-amplitude disturbances are considered. Regions of strong sensitivity to blowing and suction have been also identified for the given initial perturbations: when the control is actuated in such regions, laminarization is also observed for a shorter extent of the actuation region. The nonlinear optimal blowing and suction law consists of alternating wall-normal velocity perturbations, which appear to modify the core flow structures by means of two distinct mechanisms: (i) a wall-normal velocity compensation at small times; (ii) a rotation-counterbalancing effect al larger times. Similar control laws have been observed for different target times, values of the cost parameter, and streamwise extents of the blowing and suction zone, meaning that these two mechanisms are robust features of the optimal control strategy, provided that the nonlinear effects are taken into account

    Numerical Study of the Effect of Freestream Turbulence on by-pass Transition in a Boundary Layer

    Get PDF
    We use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, T u, and integral length scale, L, in order to determine which kind of structures are involved in the path to transition of a boundary-layer flow. The main aim is to determine under which conditions the path to transition involves structures similar to the linear or non-linear optimal perturbations. For high values of T u and L, we observe a large-amplitude path to transition characterized by localized vortical structures and patches of high- and low-momentum fluctuations. Such a scenario is found to correlate well with the L and hairpin structures resulting from the time evolution of non-linear optimal perturbations, whereas, for lower T u and L, a larger correlation is found with respect to linear optimal disturbances. This indicates that a large-amplitude path to transition exists, different from the one characterized by elongated streaks undergoing secondary instability. To distinguish between the two transition scenarios, a simple parameter linked to the streamwise localisation of high- and low-momentum zones is introduced. Finally, an accurate law to predict the transition location is provided, taking into account both T u and L, valid for both the transition scenarios

    Transient growth in the flow past a three-dimensional smooth roughness element

    Get PDF
    This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. Amplification mechanisms are described which can bypass the asymptotical growth of Tollmien–Schlichting waves. Smooth axisymmetric roughness elements of different height have been studied, at different Reynolds numbers. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can localize the optimal disturbance characterizing the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds numbers, a strong amplification mechanism has been recovered, inducing an increase of several orders of magnitude of the energy gain with respect to the Blasius case. In particular, the highest value of the energy gain is obtained for an initial varicose perturbation, differently to what found for a streaky parallel flow. Optimal varicose perturbations grow very rapidly by transporting the strong wall-normal shear of the base flow, which is localized in the wake of the bump. Such optimal disturbances are found to lead to transition for initial energies and amplitudes considerably smaller than sinuous optimal ones, inducing hairpin vortices downstream of the roughness element

    Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow

    Get PDF
    Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown

    Turbulent transition in a channel with superhydrophobic walls: the effect of roughness anisotropy

    Full text link
    Superhydrophobic surfaces dramatically reduce skin friction of overlying liquid flows. These surfaces are complex and numerical simulations usually rely on models for reducing this complexity. One of the simplest consists in finding an equivalent boundary condition through an homogenisation procedure, which in the case of channel flow over oriented riblets, leads to the presence of a small spanwise component in the homogenized base flow velocity. This work aims at investigating the influence of such a three-dimensionality of the base flow on stability and transition in a channel with walls covered by oriented riblets. Linear stability for this base flow is investigated: a new instability region, linked to cross-flow effects, is observed. Tollmien-Schlichting waves are also retrieved but the most unstable are three-dimensional. Transient growth is also affected as oblique streaks with non-zero streamwise wavenumber become the most amplified perturbations. When transition is induced by Tollmien-Schlichting waves, after an initial exponential growth regime, streaky structures with large spanwise wavenumber rapidly arise. Modal mechanisms appear to play a leading role in the development of these structures and a secondary stability analysis is realised to retrieve successfully some of their characteristics. The second scenario, initiated with crossflow vortices, displays a strong influence of nonlinearities. The flow develops into large quasi spanwise-invariant structures before breaking down to turbulence. Secondary stability on the saturated cross-flow vortices sheds light on this stage of transition. In both cases, cross-flow effects dominate the flow dynamics, suggestings the need to consider these effects when modelling superhydrophobic surfaces

    Collective secondary instabilities: an application to three-dimensional boundary-layer flow

    Full text link
    In some linearly unstable flows, secondary instability is found to have a much larger wavelength than that of the primary unstable modes, so that it cannot be recovered with a classical Floquet analysis. In this work, we apply a new formulation for capturing secondary instabilities coupling multiple length scales of the primary mode. This formulation, based on two-dimensional stability analysis coupled with a Bloch waves formalism originally described in Schmid et al. (2017), allows to consider high-dimensional systems resulting from several repetitions of a periodic unit, by solving an eigenproblem of much smaller size. Collective instabilities coupling multiple periodic units can be thus retrieved. The method is applied on the secondary stability of a swept boundary-layer flow subject to stationary cross-flow vortices, and compared with Floquet analysis. Two multi-modal instabilities are recovered: for streamwise wavenumber αv\alpha_v close to zero, approximately twelve sub-units are involved in large-wavelength oscillations; whereas a staggered pattern, characteristic of subharmonic instabilities, is observed for αv=0.087\alpha_v = 0.087

    Permeability models affecting nonlinear stability in the asymptotic suction boundary layer: the Forchheimer versus the Darcy model

    Get PDF
    The asymptotic suction boundary layer (ASBL) is used for studying two permeability models, namely the Darcy and the Forchheimer model, the latter being more physically correct according to the literature. The term that defines the two apart is a function of the non-Darcian wall permeability K^2{\hat{K}}_{2} and of the wall suction V^0{\hat{V}}_{0}, whereas the Darcian wall permeability K^1{\hat{K}}_{1} is common to the two models. The underlying interest of the study lies in the field of transition to turbulence where focus is put on two-dimensional nonlinear traveling waves (TWs) and their three-dimensional linear stability. Following a previous study by Wedin et al (2015 Phys. Rev. E 92 013022), where only the Darcy model was considered, the present work aims at comparing the two models, assessing where in the parameter space they cease to produce the same results. For low values of K^1{\hat{K}}_{1} both models produce almost identical TW solutions. However, when both increasing the suction V^0{\hat{V}}_{0} to sufficiently high amplitudes (i.e. lowering the Reynolds number Re, based on the displacement thickness) and using large values of the wall porosity, differences are observed. In terms of the non-dimensional Darcian wall permeability parameter, a, strong differences in the overall shape of the bifurcation curves are observed for a0.70a\gtrsim 0.70, with the emergence of a new family of solutions at Re lower than 100. For these large values of a, a Forchheimer number Fomax0.5{{Fo}}_{\max }\gtrsim 0.5 is found, where Fo expresses the ratio between the kinetic and viscous forces acting on the porous wall. Moreover, the minimum Reynolds number, Reg{{Re}}_{g}, for which the Navier–Stokes equations allow for nonlinear solutions, decreases for increasing values of a. Fixing the streamwise wavenumber to α = 0.154, as used in the study by Wedin et al referenced above, we find that Reg{{Re}}_{g} is lowered from Re ≈ 3000 for zero permeability, to below 50 for a = 0.80 for both permeability models. Finally, the stability of the TW solutions is assessed using a three-dimensional linearized direct numerical simulation (DNS). Low-frequency unstable modes are found for both permeability models; however, the Darcy model is found to overpredict the growth rate, and underpredict the streamwise extension of the most unstable mode. These results indicate that a careful choice of the underlying permeability model is crucial for accurately studying the transition to turbulence of boundary-layer flows over porous walls

    Enhancing Data-Assimilation in CFD using Graph Neural Networks

    Full text link
    We present a novel machine learning approach for data assimilation applied in fluid mechanics, based on adjoint-optimization augmented by Graph Neural Networks (GNNs) models. We consider as baseline the Reynolds-Averaged Navier-Stokes (RANS) equations, where the unknown is the meanflow and a closure model based on the Reynolds-stress tensor is required for correctly computing the solution. An end-to-end process is cast; first, we train a GNN model for the closure term. Second, the GNN model is introduced in the training process of data assimilation, where the RANS equations act as a physics constraint for a consistent prediction. We obtain our results using direct numerical simulations based on a Finite Element Method (FEM) solver; a two-fold interface between the GNN model and the solver allows the GNN's predictions to be incorporated into post-processing steps of the FEM analysis. The proposed scheme provides an excellent reconstruction of the meanflow without any features selection; preliminary results show promising generalization properties over unseen flow configurations.Comment: Presented at: Machine Learning and the Physical Sciences Workshop, NeurIPS 202
    corecore