8,026 research outputs found
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Searching for R-Parity Violation at Run-II of the Tevatron
We present an outlook for possible discovery of supersymmetry with broken
R-parity at Run II of the Tevatron. We first present a review of the literature
and an update of the experimental bounds. In turn we then discuss the following
processes: 1. Resonant slepton production followed by R-parity violating decay,
(a) via and (b) via . 2. How to distinguish resonant slepton
production from or production. 3. Resonant slepton production
followed by the decay to neutralino LSP, which decays via . 4. Resonant
stop production followed by the decay to a chargino, which cascades to the
neutralino LSP. 5. Gluino pair production followed by the cascade decay to
charm squarks which decay directly via . 6. Squark pair production
followed by the cascade decay to the neutralino LSP which decays via
. 7. MSSM pair production followed by the cascade decay to the LSP
which decays (a) via , (b) via , and (c) via ,
respectively. 8. Top quark and top squark decays in spontaneous R-parity
violation.Comment: 39 pages, 51 figures, LaTex, reqires aipproc2.sty and axodraw.sty. To
be published in the Physics at Run II Workshop: Supersymmetry/Higgs. Text has
been edited by H. Dreiner. Author list on front page has been correcte
Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop
There are many low-energy models of supersymmetry breaking parameters which
are motivated by theoretical and experimental considerations. Here, we discuss
some of the lesser-known theories of low-energy supersymmetry, and outline
their phenomenological consequences. In some cases, these theories have more
gauge symmetry or particle content than the Minimal Supersymmetric Standard
Model. In other cases, the parameters of the Lagrangian are unusual compared to
commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.).
The phenomenology of supersymmetry varies greatly between the different models.
Correspondingly, particular aspects of the detectors assume greater or lesser
importance. Detection of supersymmetry and the determination of all parameters
may well depend upon having the widest possible view of supersymmetry
phenomenology.Comment: 78 pages, 49 figures, to appear in the Proceedings of the Tevatron
Run II SUSY/Higgs Workshop. Editor: J. F. Gunion; BTMSSM Convenors: M.
Chertok, H. Dreiner, G. Landsberg, J. F. Gunion, J.D. Well
Partially-erupting prominences: a comparison between observations and model-predicted observables
<p><b>Aims:</b> We investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and compare these observations with observables predicted by a model of partially-expelled-flux-ropes (Gibson & Fan 2006a, ApJ, 637, L65; 2006b, J. Geophys. Res., 111, 12103).</p>
<p><b>Methods:</b> We studied 6 selected events with partially-erupting prominences using multi-wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO), and Soft X-ray Telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model.</p>
<p><b>Results:</b> The partially-expelled-flux-rope (PEFR) model can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence of internal reconnection during eruption. We find that all of the partially-erupting prominences studied in this paper exhibit indirect evidence of internal reconnection. Moreover, all cases showed evidence of at least one observable unique to the PEFR model, e.g., dimmings external to the source region and/or a soft X-ray cusp overlying a reformed sigmoid.</p>
<p><b>Conclusions:</b> The PEFR model provides a plausible mechanism to explain the observed evolution of partially-erupting-prominence-associated CMEs in our study.</p>
Solar flare-related eruptions followed by long-lasting occultation of the emission in the He II 304 A line and in microwaves
Plasma with a temperature close to the chromospheric one is ejected in solar
eruptions. Such plasma can occult some part of emission of compact sources in
active regions as well as quiet solar areas. Absorption phenomena can be
observed in the microwave range as the so-called 'negative bursts' and also in
the He II 304 A line. The paper considers three eruptive events associated with
rather powerful flares. Parameters of absorbing material of an eruption are
estimated from multi-frequency records of a 'negative burst' in one event.
'Destruction' of an eruptive filament and its dispersion like a cloud over a
huge area observed as a giant depression of the 304 A line emission has been
revealed in a few events. One such event out of three ones known to us is
considered in this paper. Another event is a possibility.Comment: 23 pages, 8 figures, submitted for publication in Astronomy Report
Dark Matter and the CACTUS Gamma-Ray Excess from Draco
The CACTUS atmospheric Cherenkov telescope collaboration recently reported a
gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very
low gas content and a large mass-to-light ratio, suggesting as a possible
explanation annihilation of weakly interacting massive particles (WIMPs) in the
Draco dark-matter halo. We show that with improved angular resolution, future
measurements can determine whether the halo is cored or cuspy, as well as its
scale radius. We find the relevant WIMP masses and annihilation cross sections
and show that supersymmetric models can account for the required gamma-ray
flux. The annihilation cross section range is found to be not compatible with a
standard thermal relic dark-matter production. We compute for these
supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy
range and the rates for direct neutralino detection and for the flux of
neutrinos from neutralino annihilation in the Sun. We also discuss the
possibility that the bulk of the signal detected by CACTUS comes from direct
WIMP annihilation to two photons and point out that a decaying-dark-matter
scenario for Draco is not compatible with the gamma-ray flux from the Galactic
center and in the diffuse gamma-ray background.Comment: 24 pages, 10 figures; version accepted for publication in JCA
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Threshold Electrodisintegration of ^3He
Cross sections were measured for the near-threshold electrodisintegration of
^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and
prior measurements the transverse and longitudinal response functions R_T and
R_L were deduced. Comparisons are made against previously published and new
non-relativistic A=3 calculations using the best available NN potentials. In
general, for q<2 fm^{-1} these calculations accurately predict the threshold
electrodisintegration of ^3He. Agreement at increasing q demands consideration
of two-body terms, but discrepancies still appear at the highest momentum
transfers probed, perhaps due to the neglect of relativistic dynamics, or to
the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review
An Analysis of Errors in Graph-Based Keypoint Matching and Proposed Solutions
International audienceAn error occurs in graph-based keypoint matching when key-points in two different images are matched by an algorithm but do not correspond to the same physical point. Most previous methods acquire keypoints in a black-box manner, and focus on developing better algorithms to match the provided points. However to study the complete performance of a matching system one has to study errors through the whole matching pipeline, from keypoint detection, candidate selection to graph optimisation. We show that in the full pipeline there are six different types of errors that cause mismatches. We then present a matching framework designed to reduce these errors. We achieve this by adapting keypoint detectors to better suit the needs of graph-based matching, and achieve better graph constraints by exploiting more information from their keypoints. Our framework is applicable in general images and can handle clutter and motion discontinuities. We also propose a method to identify many mismatches a posteriori based on Left-Right Consistency inspired by stereo matching due to the asymmetric way we detect keypoints and define the graph
- …