40 research outputs found
Independent Prognostic Significance of Monosomy 17 and Impact of Karyotype Complexity in Monosomal Karyotype/Complex Karyotype Acute Myeloid Leukemia: Results from Four ECOG-ACRIN Prospective Therapeutic Trials
The presence of a monosomal karyotype (MK+) and/or a complex karyotype (CK+) identifies subcategories of AML with poor prognosis. The prognostic significance of the most common monosomies (monosomy 5, monosomy 7, and monosomy 17) within MK+/CK+ AML is not well defined. We analyzed data from 1,592 AML patients age 17–93 years enrolled on ECOG-ACRIN therapeutic trials. The majority of MK+ patients (182/195; 93%) were MK+/CK+ with 87% (158/182) having ≥5 clonal abnormalities (CK≥ 5). MK+ patients with karyotype complexity ≤4 had a median overall survival (OS) of 0.4y compared to 1.0y for MK- with complexity ≤4 (p < 0.001), whereas no OS difference was seen in MK+ vs. MK- patients with CK≥ 5 (p = 0.82). Monosomy 5 (93%; 50/54) typically occurred within a highly complex karyotype and had no impact on OS (0.4y; p = 0.95). Monosomy 7 demonstrated no impact on OS in patients with CK≥ 5 (p = 0.39) or CK ≤ 4 (p = 0.44). Monosomy 17 appeared in 43% (68/158) of CK≥ 5 patients and demonstrated statistically significant worse OS (0.4y) compared to CK≥ 5 patients without monosomy 17 (0.5y; p = 0.012). Our data suggest that the prognostic impact of MK+ is limited to those with less complex karyotypes and that monosomy 17 may independently predict for worse survival in patients with AML
Section E6.1–6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow–acquired chromosomal abnormalities
DISCLAIMER: These American College of Medical Genetics and Genomics standards and guidelines are developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these standards and guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cytogenetic analyses of hematological neoplasms are performed to detect and characterize clonal chromosomal abnormalities that have important diagnostic, prognostic, and therapeutic implications. At the time of diagnosis, cytogenetic abnormalities assist in the diagnosis of such disorders and can provide important prognostic information. At the time of relapse, cytogenetic analysis can be used to confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the standards and guidelines applicable to chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. This updated Section E6.1-6.4 has been incorporated into and supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the 2009 Edition (Revised 01/2010), American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories.Genet Med 18 6, 635-642