106 research outputs found

    Panel of resonators with variable resonance frequency for noise control

    Get PDF
    The article focuses on acoustic resonators made of perforated sheets bonded onto honeycomb cavities. This kind of resonators can be used in adverse conditions such as high temperature, dirt and mechanical constraints. For all these reasons, they are, for example, widely used in aeronautic applications. The acoustic properties are directly linked to the size, shape and porosity of holes and to the thickness of air gaps. Unfortunately, the acoustic absorption of these resonators is selective in frequency and conventional acoustic resonators are only well adapted to tonal noises. In case of variable tonal noise, the efficiency is limited if the resonators are not tunable. One common solution is to control the depth of cavities based on the noise to be attenuated. This article proposes another technology of tunable resonators with only a very small mass and size increase. It consists of two superposed and identically perforated plates associated with cavities. One plate is fixed and bonded to the cavities and the other plate is mobile. The present concept enables to change the internal shapes of the holes of the perforated layers. The article describes this system and gives a theoretical model of the normal incidence acoustic impedance that allows to predict the acoustic behavior, in particular the resonance frequency. The model shows that the resonance frequency varies with hole profiles and that the absorption peak moves towards the lower frequencies. The proposed model is validated by measurements on various configurations of resonators tested in an impedance tube. The perspectives of this work are to adapt the hole profiles using an actuator in order to perform active control of impedance

    Damage location method for thin composites structures - application to an aircraft door

    Get PDF
    Piezoelectric sensors are widely used for Structure Health Monitoring (SHM) technique due to their high-frequency capability. In particular, electromechanical impedance (EMI) techniques give simple and low cost solutions for detecting damage in composite structures. For example, damage indicators computed from EMI deviations between the pristine structure and the damaged structure can be compared to a threshold in order to point damage. When it is question of damage localization, the simple analysis of the electromechanical impedance fails to furnish enough information. We propose a method based both on EMI damage indicators and on the acoustic attenuation level to locate damage. One of the main advantages of our method, so called data driven method, is that only experimental data are used as inputs for our algorithms. It does not rely on any model

    Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures

    Get PDF
    Piezoelectric sensors are widely used for structure health monitoring technique. In particular, electromechanical impedance techniques give simple and low-cost solutions for detecting damage in composite structures. The purpose of the method proposed in this article is to generate a damage localization map based on both indicators computed from electromechanical impedance spectrums and inverse distance weighting interpolation. The weights for the interpolation have a physical sense and are computed according to an exponential law of the measured attenuation of acoustic waves. One of the main advantages of the method, so-called data-driven method, is that only experimental data are used as inputs for our algorithm. It does not rely on any model. The proposed method has been validated on both one-dimensional and two-dimensional composite structures

    Smart EMI monitoring of thin composite structures

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in-situ damage detection and localization in carbon fibre reinforced plates (CFRP). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANN) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate

    Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in situ damage detection and localization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate

    Fan noise analysis using a microphone array

    Get PDF
    The purpose of this paper is to show the capabilities of MicrodB's acoustic imagery algorithm to characterize rotating sources. First part will explain the main specificity of the treatment. In the second part, possibilities of analysis and validations on simple tests will be demonstrated. In the last part, an industrial application will be studied : a Technofan extract fan with a 10000 RPM rotational speed will be analysed. Both fixed and rotating sources will be separated, allowing the localization of rotating sources on the blades

    Baffle silencer with tunable resonators for adaptive control of variable tonal noise

    Get PDF
    This article presents a baffle silencer with tunable resonators consisting of two superimposed and identically perforated plates associated with a partitioned cavity made of thermoplastic resin. One plate is fixed while the other is movable. Displacement of the mobile plate changes the internal shapes of the resonator necks and shifts the resonance frequency of the system to lower values. The contributions of this paper are firstly, the modeling of a panel with tunable resonators made of necks with a variable geometry and a partitioned cavity in resin and, secondly, the use of the model to elaborate a control strategy to attenuate variable tonal noise. All of the theoretical studies are validated by experimental measurements. Final results show the efficiency of the silencer in attenuating a tonal noise that varies between 2000 and 2800 Hz

    Silencer with tunable resonators for active noise control

    Get PDF
    The article deals with active noise control and presents a silencer made of tunable acoustic resonators to reduce variable tonal noises. The silencer is composed of baffles with acoustic resonators made of two superposed and identically perforated plates associated with cavities. One of the plates is mobile and its displacement is controlled by an electromechanical system, allowing changing the internal shapes of the holes of the perforated layers. Consequently the impedance of the resonators and their resonance frequencies can be controlled. These tunable resonators can be used for noise control of variable tonal noises such as those generated by fans for example. The advantages of the proposed system are the simplicity of the actuation and the compactness of the system

    3D digital image correlation applied to birdstrike tests

    Get PDF
    The development of new bird strike shielding materials for commercial aircrafts requires test campaigns. During these tests, measurement of the high speed deformation is needed to characterize and compare the mechanical response of the shielding samples and to correlate numerical simulations with experiments. In this work, 3D digital image correlation method is used with high speed (HSP) cameras to compute the displacement and strain fields on a large area (approximately 400mm wide) of the back side of impacted samples. Compromise on spatial resolution, frame rate of HSP camera and measurement error is discussed

    An experimental study of low-velocity impacts into granular material in reduced gravity

    Get PDF
    In order to improve our understanding of landing on small bodies and of asteroid evolution, we use our novel drop tower facility \citep{sunday2016} to perform low-velocity (2 - 40 cm/s), shallow impact experiments of a 10 cm diameter aluminum sphere into quartz sand in low effective gravities (~0.2 - 1 m/s^2). Using in-situ accelerometers we measure the acceleration profile during the impacts and determine the peak accelerations, collision durations and maximum penetration depth. We find that the penetration depth scales linearly with the collision velocity but is independent of the effective gravity for the experimental range tested, and that the collision duration is independent of both the effective gravity and the collision velocity. No rebounds are observed in any of the experiments. Our low-gravity experimental results indicate that the transition from the quasi-static regime to the inertial regime occurs for impact energies two orders of magnitude smaller than in similar impact experiments under terrestrial gravity. The lower energy regime change may be due to the increased hydrodynamic drag of the surface material in our experiments, but may also support the notion that the quasi-static regime reduces as the effective gravity becomes lower
    • 

    corecore