365 research outputs found

    Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors

    Get PDF
    To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice. KC migration and wound reepithelialization were facilitated by M4 and inhibited by M3. Additional studies showed that M4 increases expression of “migratory” integrins α5β1, αVβ5, and αVβ6, whereas M3 up-regulates “sedentary” integrins α2β1 and α3β1. Inhibition of migration by M3 was mediated through Ca2+-dependent guanylyl cyclase–cyclic GMP–protein kinase G signaling pathway. The M4 effects resulted from inhibition of the inhibitory pathway involving the adenylyl cyclase–cyclic AMP–protein kinase A pathway. Both signaling pathways intersected at Rho, indicating that Rho kinase provides a common effector for M3 and M4 regulation of cell migration. These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing

    Special features of the 9^9Be\to2He fragmentation in emulsion at an energy of 1.2~A~GeV

    Full text link
    The results of investigations of the relativistic 9^9Be nucleus fragmentation in emulsion which entails the production of two He fragments of an energy of 1.2~A~GeV are presented. The results of the angular measurements of the 9^9Be\to2He events are analyzed. The 9^9Be8\to^8Be+n fragmentation channel involving the 8^8Be decay from the ground (0+^+) and the first excited (2+^+) states to two α\alpha particles is observed to be predominant.Comment: 10 pages, 6 figures, conference: Conference on Physics of Fundamental Interactions, Moscow, Russia, 5-9 Dec 2005 (Author's translation

    Anti-Inflammatory Effects of the Nicotinergic Peptides SLURP-1 and SLURP-2 on Human Intestinal Epithelial Cells and Immunocytes

    Get PDF
    A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD

    Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium

    Get PDF
    Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte α7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of α7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with α-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking α7 nAChR channels. Elimination of the α7 signaling pathway blocked nicotine-induced influx of 45Ca2+ and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the α7 nAChR pathway favored cell cycle progression. In the epidermis of α7−/− mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of α7 was associated with up-regulated expression of the α3 containing nAChR channels that lack α5 subunit, and both homomeric α9- and heteromeric α9α10-made nAChRs. Thus, this study demonstrates that ACh signaling through α7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx
    corecore