15 research outputs found

    Robust quantization of a molecular motor motion in a stochastic environment

    Get PDF
    We explore quantization of the response of a molecular motor to periodic modulation of control parameters. We formulate the Pumping-Quantization Theorem (PQT) that identifies the conditions for robust integer quantized behavior of a periodically driven molecular machine. Implication of PQT on experiments with catenane molecules are discussed.Comment: 7 pages, 4 figures. J. Chem. Phys. Communications (in press

    Duality and fluctuation relations for statistics of currents on cyclic graphs

    Full text link
    We consider stochastic motion of a particle on a cyclic graph with arbitrarily periodic time dependent kinetic rates. We demonstrate duality relations for statistics of currents in this model and in its continuous version of a diffusion in one dimension. Our duality relations are valid beyond detailed balance constraints and lead to exact expressions that relate statistics of currents induced by dual driving protocols. We also show that previously known no-pumping theorems and some of the fluctuation relations, when they are applied to cyclic graphs or to one dimensional diffusion, are special consequences of our duality.Comment: 2 figure, 6 pages (In twocolumn). Accepted by JSTA

    Pumping-Restriction Theorem for Stochastic Networks

    Full text link
    We formulate an exact result, which we refer to as the pumping restriction theorem (PRT). It imposes strong restrictions on the currents generated by periodic driving in a generic dissipative system with detailed balance. Our theorem unifies previously known results with the new ones and provides a universal nonperturbative approach to explore further restrictions on the stochastic pump effect in non-adiabatically driven systems.Comment: 4 pages, 5 figure

    Particle current in symmetric exclusion process with time-dependent hopping rates

    Full text link
    In a recent study, (Jain et al 2007 Phys. Rev. Lett. 99 190601), a symmetric exclusion process with time-dependent hopping rates was introduced. Using simulations and a perturbation theory, it was shown that if the hopping rates at two neighboring sites of a closed ring vary periodically in time and have a relative phase difference, there is a net DC current which decreases inversely with the system size. In this work, we simplify and generalize our earlier treatment. We study a model where hopping rates at all sites vary periodically in time, and show that for certain choices of relative phases, a DC current of order unity can be obtained. Our results are obtained using a perturbation theory in the amplitude of the time-dependent part of the hopping rate. We also present results obtained in a sudden approximation that assumes large modulation frequency.Comment: 17 pages, 2 figure

    Geometric Universality of Currents

    Full text link
    We discuss a non-equilibrium statistical system on a graph or network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that under the assumption of constancy of the relative rates, the system demonstrates a profound statistical symmetry, resulting in geometric universality of the statistics of the particle currents. This phenomenon applies broadly to many man-made and natural open stochastic systems, such as queuing of packages over the internet, transport of electrons and quasi-particles in mesoscopic systems, and chains of reactions in bio-chemical networks. We illustrate the utility of our general approach using two enabling examples from the two latter disciplines.Comment: 15 pages, 5 figure

    Generally covariant state-dependent diffusion

    Get PDF
    Statistical invariance of Wiener increments under SO(n) rotations provides a notion of gauge transformation of state-dependent Brownian motion. We show that the stochastic dynamics of non gauge-invariant systems is not unambiguously defined. They typically do not relax to equilibrium steady states even in the absence of extenal forces. Assuming both coordinate covariance and gauge invariance, we derive a second-order Langevin equation with state-dependent diffusion matrix and vanishing environmental forces. It differs from previous proposals but nevertheless entails the Einstein relation, a Maxwellian conditional steady state for the velocities, and the equipartition theorem. The over-damping limit leads to a stochastic differential equation in state space that cannot be interpreted as a pure differential (Ito, Stratonovich or else). At odds with the latter interpretations, the corresponding Fokker-Planck equation admits an equilibrium steady state; a detailed comparison with other theories of state-dependent diffusion is carried out. We propose this as a theory of diffusion in a heat bath with varying temperature. Besides equilibrium, a crucial experimental signature is the non-uniform steady spatial distribution.Comment: 24 page
    corecore