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Robust quantization of a molecular motor motion in a stochastic
environment
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We explore quantization of the response of a molecular motor to periodic modulation of control
parameters. We formulate the pumping-quantization theorem �PQT� that identifies the conditions for
robust integer quantized behavior of a periodically driven molecular machine. Implication of PQT
on experiments with catenane molecules are discussed. © 2009 American Institute of Physics.
�doi:10.1063/1.3263821�

Molecular motors are molecules capable of performing
controlled mechanical motion. An ability to rotate its parts is
a crucial function of a molecular motor.1–3 It is challenging
to control this motion in strongly fluctuating environment,
experienced by any nanoscale system at room temperature.
In the experiment,2 controlled rotation was implemented us-
ing 2- and 3-catenane molecules that are made of interlocked
polymer rings �n-catenane is made of n rings�. Figure 1
shows geometry of a 3-catenane molecule and its six meta-
stable states. Small �mobile� rings perform transitions among
three stations on the third, larger ring. These transitions are
caused by thermal fluctuations and, alone, may not lead to
directed �clockwise or counterclockwise� motion on average.
In the experiments, the directed motion was induced by
modulating the coupling strengths of mobile rings to stations.
This forced the smaller rings to orbit around the center of the
larger ring, while remaining interlocked with it.

In this communication, we address an observation1,2,4,5

that a molecular motor can perform robust quantized opera-
tions, e.g., making a full mobile ring rotation per cycle in the
control parameter space, even though the ring transitions are
stochastic. We illustrate the phenomenon of integer quantiza-
tion using a specific example of a six-state stochastic model
in Fig. 1. The problem of finding the number of rotations can
be formulated in terms of stochastic single particle motion on
a graph X whose nodes and edges represent the metastable
states and allowed transitions, respectively. The transition
rates that satisfy the detailed balance can be written in
Arrhenius form, i.e., they can be parameterized by the well
depths Ei and potential barriers Wij =Wji, so that the kinetic
transition rate from the node j to i is given by kij =e��Ej−Wij�,
with �=1 /kBT being the inverse temperature. Even if the
rates can be written in Arrhenius form at any time, periodic
changes of well depths and barriers result in a directed par-
ticle motion. The phenomenon is referred to as the stochastic
pump effect.4,6–8

For the model in Fig. 1, we further express Wij and Ei in
terms of the directly controllable parameters, represented by
the coupling energies � j

i of ith mobile ring to jth station, or

the potential barriers �nm
i between the station n, occupied by

the ith ring, and an empty station m. By requesting mobile
rings be unable to occupy the same station simultaneously,
and by comparing state energies and kinetic rates written in
different parametrizations, e.g., E1=�1

1+�2
2 or e��E1−W16�

=e���1
1−�13

1 �, we can relate the energies � j
i and barriers �mn

i to
Ek and Wkl in an effective six-state model in Fig. 1, which is,
E2=�1

1+�3
2, E3=�2

1+�3
2, E4=�2

1+�1
2, E5=�3
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1 ,
W56=�3

1+�12
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Consider a cyclic adiabatic evolution of �1
1 and �2

1. We
introduce a pump current vector Qs, whose components Qij

s

are average numbers of times the particle passed through
links �i , j� during the cycle s of control parameters evolution,
i.e., Qs=�0

TJ�t�dt, where J�t� is the instantaneous current
vector and T is time of cyclic evolution of control param-
eters. The graph corresponding to Fig. 1 has one loop and
hence Qi,i+1

s =Q for any i, i.e., pump currents are the same for
each link.

Figure 2 shows the dependence of the number Q of ring
rotations per cycle on �, obtained by solving the master
equation in the adiabatic limit. It shows that, generally, the
system’s response to a periodic parameter variation is not
quantized, however, in the low-temperature �→� limit, Q
saturates to an integer value Q=1. We have checked for a
number of models that the phenomenon is generic. By
choosing arbitrary closed contour in the space of control pa-
rameters, followed by choosing the remaining constant pa-
rameters randomly, integer response was always achieved in
the �→� limit.

a�Electronic mail: nsinitsyn@lanl.gov. FIG. 1. Geometry and metastable states of a 3-catenane molecule.
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The pumping-quantization theorem �PQT� rationalizes
the observation and makes the following assertion: Consider
any finite graph representing a Markov chain with kinetic
rates written in Arrhenius form. If during the cyclic evolution
of control parameters no degeneracy of the potential barriers
can encounter simultaneously with degeneracy of the mini-
mal well depths, then in the adiabatic and after this low
temperature ��→�� limits, the average number of particle
transitions through any link of a graph per a driving cycle is
an integer.

We emphasize that by considering �→� limit after the
adiabatic approximation we assume that the system has suf-
ficient time to explore the whole phase space by making
stochastic transitions before substantial change of control pa-
rameters can happen. Hence the number of rotations of the
system per cycle is random and the quantization, which we
discuss, appears only on average. Our arguments for the PQT
are based on showing that various particle paths on a graph,
which essentially contribute to the total current, are homo-
logically equivalent to a single closed path, i.e., they differ
from each other only by multiple transitions in both direc-
tions through some links. This is sufficient for a proof, since
a single closed path can obviously pass through any link only
an integer number of times. The proof of PQT includes three
steps.

�i� First, we prove the following identity

�J,Jcons� � �
�i,j	

e�WijJijJij
cons = 0, �1�

valid for the physical current J and any conserved current
Jcons that circulates in a loop of a graph and has equal values
on any link of that loop. Summation in Eq. �1� runs over the
graph links. Equation �1� follows from a fact that the physi-
cal instantaneous current can always be represented in the
form Jij =e−�Wij�e�Ej�pj −e�Ei�pi�, where �pi is deviation of
the probability on the ith node from its equilibrium value.
Taking any loop of a graph and summing �e�Ej�pj −e�Ei�pi�
along its links gives zero, which is equivalent to Eq. �1�.

In the case of no barrier degeneracy, due to the e�Wij

factor in Eq. �1�, the link �k , l	 with the largest barrier inside
any loop on a graph dominates the scalar product �1� in the
�→� limit, and the only way to make this product zero is to
conclude that lim�→��Jkl�=0. Consider a time segment
� without barrier degeneracies and let Q� be the mean

current integrated over the time of this segment. Integrating
Eq. �1� over time leads to inequality 
Qkl

� 

���i,j	��k,l	max�e��Wij−Wkl��
Qij

�
, where summation is over all
links of the loop except the link �k , l	 with the highest barrier,
and max�¯ � means the maximum value of the expression
during the given time segment. The factors max�e��Wij−Wkl��
become infinitely small in the �→� limit but, for any given
finite contour in the space of control parameters, 
Qij

�
 re-
mains finite even in the limit of infinitely long adiabatic evo-
lution because pump currents, on average, depend only on a
choice of a path of control parameters but do not depend
explicitly on time of the evolution.6,8 This leads to a stronger
result lim�→�
Qkl

� 
=0.
�ii� Here we note that the suppression of transitions

through highest loop barriers during time interval without
barrier degeneracies means that complex particle motion is

restricted to a subgraph X̃W�X, referred to as the maximal
spanning tree, which depends only on the ordering of non-
degenerate barriers W. It is constructed from X step-by-step
by eliminating the edge with the largest barrier that does not
destroy the connectivity. Eventually, when none of the links
can be removed without disconnecting the graph, we obtain

the tree X̃W. When energy Ej� approaches the lowest energy
Ej and then becomes a new energy minimum, the particle

travels from site j to site j�. Let ljj��X̃W� be the unique short-

est path that connects j to j� via X̃W. Although transitions
form j to j� are stochastic and can be done in a variety of

ways, all paths from j to j� on X̃W are homologically equiva-

lent to ljj��X̃W�.
�iii� To include events of barrier degeneracies, we parti-

tion the time period of a driving protocol into a set of small
enough segments, so that for each segment we either encoun-
ter only the minimal well depth degeneracy or just the po-
tential barrier degeneracy. We refer to them as to 0- and
1-segments, respectively. If necessary, we merge the con-
secutive segments of the same type to make the 0- and
1-segments alternating. In the �→� limit, no current is gen-
erated on the 1-segment, since the populations are concen-
trated in the node j with the lowest value of Ej but a nonzero
on average pump current is possible only when the state
probability vector changes.8 The populations at the begin-
ning and at the end of the 0-segment � are concentrated,
respectively, in well-defined nodes j� and j�� , determined by
the neighboring 1-segment. Since the paths with nonvanish-

ing probabilities from j� to j�� belong to a tree X̃W�
, the total

current Q�, passing during the time of the 0-segment � has

values 1 on any link on the shortest path lj�j
��
�X̃W�

� and it has
zero values on other links. Finally, the current per cycle Qs

=��Q� is generated by the concatenation of the consecutive

paths lj�j
��
�X̃W�

� that correspond to the �-segments. This ex-
plicitly identifies the generated integer-valued current Qs and
completes the proof of the PQT.

According to PQT, noninteger quantization in 3-catenane
molecules is highly unlikely when all mobile rings and sta-
tions are different and �→�. In what follows we argue that
robust fractional quantization can occur in systems, where
due to some symmetries, permanent �rigid� degeneracy of

FIG. 2. Average number of rotations of mobile rings vs inverse temperature
in a 3-catenane molecule after adiabatic evolution of control parameters
along the contour �1

1=−�1
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2
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certain wells and/or barriers takes place. To illustrate the
point we consider the 3-catenane system in Fig. 1, with a
special symmetry: one of the mobile rings, called active, has
three residence energies � j, available for control, whereas the
other, passive, mobile ring has the same constant residing
energy �=0 for all three stations. All barriers for both rings
are constant and identical, equal to �. The system is de-
scribed by the Markov-chain model in Fig. 3 defined on the
cyclic six-node graph X with permanently degenerate wells
E2j−1=E2j =� j, distinct barriers Wj =� j +� with j=1,2 ,3, and
a permanently degenerate barrier W0=�. The links �2j
−1,2j	 and �2j ,2j+1	 describe the transitions when the pas-
sive and the active ring, respectively, switches to the nonoc-
cupied station.

The total current Qs can be calculated in a way similar to
the integer-quantization case by partitioning the time period
into a set of alternating 0- and 1-segments. Consider a seg-
ment � with no degeneracy among the parameters Wk with
k=0,1 ,2 ,3. Similarly to the integer-quantized case, the larg-
est barriers still dominate the scalar product in Eq. �1�, how-
ever, they can now be degenerate. Let �pi

� be the change of
the probability at site i during the 0-segment � and let max�

be the set of links �i , i+1	 with the largest barriers during �.
Then, in the low-temperature limit, Eq. �1� combined with
the continuity equations leads to

�
max�

Qi,i+1
� = 0, �pj

� = Qj−1,j
� − Qj,j+1

� , j = 1, . . . ,5. �2�

Equations �2� completely determine currents Q� on each
time segment. Note that solution of Eqs. �2� results in gen-
erally rational values for Qj,j+1

� because �pj
� take values in a

set ��1/2,0,1/2� and all other coefficients in equations are
integers.

The protocols under consideration avoid the set Y of
“bad” parameters, characterized by simultaneous degeneracy
of the lowest wells and highest barriers. For the model in
Fig. 3, Y consists of four lines Ya, a=0,1 ,2 ,3, in the space
of ε= ��1 ,�2 ,�3�, as it is shown in Fig. 4. To understand the
global phase diagram of the quantized response, we examine
the currents Qa

s , the same for all links, which are generated
by parameter motion along small contours enclosing Ya only
one time. Finding the currents on all contributing 0-segment,
as described above, and then summing them yields the cur-

rents of 1 and 1/3, as shown in Fig. 4. The independence of
Qa on a variation of a contour around Ya allows the corre-
sponding fluxes Q0=1 and Q j =1 /3 for j=1,2 ,3 to be asso-
ciated with the lines. It also suggests a topological nature of
the quantized current: the response to a general contour is
given by the rational winding-index Qs=�anaQa, where na is
the number of times the contour encloses the line Ya, taken
with a proper sign depending on orientations �see Fig. 4�.

There is an obvious analogy between topological prop-
erties of pump currents and the Aharonov–Bohm effect in
quantum mechanics. In the latter, the phase of the electronic
wave function changes upon enclosing a quasi-one-
dimensional solenoid with a magnetic field by an amount
proportional to the total flux of the field inside the solenoid.
This analogy can be extended using the recent observation
that stochastic pump effect is a geometric phenomenon6,8 in a
sense that integrated over time current can be written as a
contour integral in the space of control parameters Qs

=�sA ·dε, where A is a vector potential �gauge field� in the
space of control parameters. This allows an effective “mag-
netic field” B=�εA to be introduced. Our explicit calcu-
lations show that, at low temperatures, the field B is local-
ized in narrow tubes, carrying fluxes 1 and 1/3, which
become Ya-lines in the �→� limit.

The arguments leading to rational quantization in our
model with degeneracies can be applied to any graph with
rigid degeneracy of some barriers and/or potential wells. For
example, rigid degeneracies appear in the 3-catenane model
with identical mobile rings. Similar considerations predict
fractional quantization with a minimal ratio 1/2 for this sys-
tem. We checked numerically that this fractional quantization
is robust when parameters are varied keeping mobile rings
identical. However, it is destroyed as soon as mobile rings
are made different.

FIG. 3. The six-state model with triple degeneracy of barriers and double
degeneracy of all well depths.

FIG. 4. Topology of the degeneracy space and currents in the active/passive
ring model.
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In conclusion, we have shown that current quantization
in a stochastic system is a generic phenomenon and we iden-
tified the conditions for its observation. PQT directly applies
to experiments with catenane molecules predicting integer-
quantized response in a generic situation. We showed, how-
ever, that additional symmetries can lead to fractional quan-
tization. For example, we predict 1/2 quantization in a
3-catenane molecule that has two identical rings. We also
showed that a 3-catenane molecule can demonstrate frac-
tional quantization with a minimal ratio of 1/3, which has not
been observed previously. Quantization of a molecular motor
response is topologically protected. This robustness should
have applications to the control of nanoscale systems, expe-
riencing thermal fluctuations.

We are grateful to M. Chertkov, J. R. Klein, and J.
Horowitz for useful discussions. This material is based upon
work supported by NSF under Grant Nos. CHE-0808910 and
ECCS-0925618.
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