12 research outputs found
Spin Diffusion and Relaxation in a Nonuniform Magnetic Field
We consider a quasiclassical model that allows us to simulate the process of
spin diffusion and relaxation in the presence of a highly nonuniform magnetic
field. The energy of the slow relaxing spins flows to the fast relaxing spins
due to the dipole-dipole interaction between the spins. The magnetic field
gradient suppresses spin diffusion and increases the overall relaxation time in
the system. The results of our numerical simulations are in a good agreement
with the available experimental data.Comment: 11 pages and 6 figure
Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam
We demonstrate experimentally and numerically that the application of a
partially coherent beam (PCB) in combination with time averaging leads to a
significant reduction in the scintillation index. We use a simplified
experimental approach in which the atmospheric turbulence is simulated by a
phase diffuser. The role of the speckle size, the amplitude of the phase
modulation, and the strength of the atmospheric turbulence are examined. We
obtain good agreement between our numerical simulations and our experimental
results. This study provides a useful foundation for future applications of
PCB-based methods of scintillation reduction in physical atmospheres.Comment: 18 pages, 14 figure
Coherent, mechanical control of a single electronic spin
The ability to control and manipulate spins via electrical, magnetic and
optical means has generated numerous applications in metrology and quantum
information science in recent years. A promising alternative method for spin
manipulation is the use of mechanical motion, where the oscillation of a
mechanical resonator can be magnetically coupled to a spins magnetic dipole,
which could enable scalable quantum information architectures9 and sensitive
nanoscale magnetometry. To date, however, only population control of spins has
been realized via classical motion of a mechanical resonator. Here, we
demonstrate coherent mechanical control of an individual spin under ambient
conditions using the driven motion of a mechanical resonator that is
magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV)
color center in diamond. Coherent control of this hybrid mechanical/spin system
is achieved by synchronizing pulsed spin-addressing protocols (involving
optical and radiofrequency fields) to the motion of the driven oscillator,
which allows coherent mechanical manipulation of both the population and phase
of the spin via motion-induced Zeeman shifts of the NV spins energy. We
demonstrate applications of this coherent mechanical spin-control technique to
sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure
A robust, scanning quantum system for nanoscale sensing and imaging
Controllable atomic-scale quantum systems hold great potential as sensitive
tools for nanoscale imaging and metrology. Possible applications range from
nanoscale electric and magnetic field sensing to single photon microscopy,
quantum information processing, and bioimaging. At the heart of such schemes is
the ability to scan and accurately position a robust sensor within a few
nanometers of a sample of interest, while preserving the sensor's quantum
coherence and readout fidelity. These combined requirements remain a challenge
for all existing approaches that rely on direct grafting of individual solid
state quantum systems or single molecules onto scanning-probe tips. Here, we
demonstrate the fabrication and room temperature operation of a robust and
isolated atomic-scale quantum sensor for scanning probe microscopy.
Specifically, we employ a high-purity, single-crystalline diamond nanopillar
probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the
versatility and performance of our scanning NV sensor by conducting
quantitative nanoscale magnetic field imaging and near-field single-photon
fluorescence quenching microscopy. In both cases, we obtain imaging resolution
in the range of 20 nm and sensitivity unprecedented in scanning quantum probe
microscopy
Coherent-population trapping in a highly degenerate open system
Coherent-population trapping, heretofore realized in closed systems, is also
possible in highly degenerate open molecular systems. We consider a
rovibrational molecular transition, where the ground magnetic m-sublevels
are coupled to the corresponding upper states, and are therefore expected to
be emptied after a few lifetimes. We show that upon excitation by
elliptically polarized light, the population remains trapped in a coherent
superposition of ground-state sublevels which does not interact further with
the exciting light. Unlike the simple cases of linearly and circularly
polarized light and of a closed three-level system (i.e. atoms), here the
trapping level is not the one with |m|=0,J, but rather a combination of
several states, which depends on the ellipticity of the exciting light