12 research outputs found

    Spin Diffusion and Relaxation in a Nonuniform Magnetic Field

    Full text link
    We consider a quasiclassical model that allows us to simulate the process of spin diffusion and relaxation in the presence of a highly nonuniform magnetic field. The energy of the slow relaxing spins flows to the fast relaxing spins due to the dipole-dipole interaction between the spins. The magnetic field gradient suppresses spin diffusion and increases the overall relaxation time in the system. The results of our numerical simulations are in a good agreement with the available experimental data.Comment: 11 pages and 6 figure

    Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam

    Full text link
    We demonstrate experimentally and numerically that the application of a partially coherent beam (PCB) in combination with time averaging leads to a significant reduction in the scintillation index. We use a simplified experimental approach in which the atmospheric turbulence is simulated by a phase diffuser. The role of the speckle size, the amplitude of the phase modulation, and the strength of the atmospheric turbulence are examined. We obtain good agreement between our numerical simulations and our experimental results. This study provides a useful foundation for future applications of PCB-based methods of scintillation reduction in physical atmospheres.Comment: 18 pages, 14 figure

    Coherent, mechanical control of a single electronic spin

    Get PDF
    The ability to control and manipulate spins via electrical, magnetic and optical means has generated numerous applications in metrology and quantum information science in recent years. A promising alternative method for spin manipulation is the use of mechanical motion, where the oscillation of a mechanical resonator can be magnetically coupled to a spins magnetic dipole, which could enable scalable quantum information architectures9 and sensitive nanoscale magnetometry. To date, however, only population control of spins has been realized via classical motion of a mechanical resonator. Here, we demonstrate coherent mechanical control of an individual spin under ambient conditions using the driven motion of a mechanical resonator that is magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV) color center in diamond. Coherent control of this hybrid mechanical/spin system is achieved by synchronizing pulsed spin-addressing protocols (involving optical and radiofrequency fields) to the motion of the driven oscillator, which allows coherent mechanical manipulation of both the population and phase of the spin via motion-induced Zeeman shifts of the NV spins energy. We demonstrate applications of this coherent mechanical spin-control technique to sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy

    Coherent-population trapping in a highly degenerate open system

    No full text
    Coherent-population trapping, heretofore realized in closed systems, is also possible in highly degenerate open molecular systems. We consider a rovibrational molecular transition, where the ground magnetic m-sublevels are coupled to the corresponding upper states, and are therefore expected to be emptied after a few lifetimes. We show that upon excitation by elliptically polarized light, the population remains trapped in a coherent superposition of ground-state sublevels which does not interact further with the exciting light. Unlike the simple cases of linearly and circularly polarized light and of a closed three-level system (i.e. atoms), here the trapping level is not the one with |m|=0,J, but rather a combination of several states, which depends on the ellipticity of the exciting light
    corecore