1,674 research outputs found

    Firmware Development Improves System Efficiency

    Get PDF
    Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system

    A Continuum of Consumer Attitudes Toward Genetically Modified Foods in the United States

    Get PDF
    A national telephone survey was conducted in the United States in April 2002 to study the consumer acceptance of genetically modified (GM) foods. Attitudes toward GM foods were examined through the use of a multiple correspondence analysis (MCA), analyzing the interrelationships among many categorical variables. This method was combined with a cluster analysis to construct a typology of consumers' attitudes. Four distinct classes of attitudes were finally extracted, denoted as: Proponents, Non-Opponents, Moderate Opponents, and Extreme Opponents. It was estimated that only 35% of the surveyed population was opposed to GM foods.consumer acceptance, correspondence analysis, GM foods, telephone survey, Consumer/Household Economics, Research and Development/Tech Change/Emerging Technologies,

    On number fields with nontrivial subfields

    Full text link
    What is the probability for a number field of composite degree dd to have a nontrivial subfield? As the reader might expect the answer heavily depends on the interpretation of probability. We show that if the fields are enumerated by the smallest height of their generators the probability is zero, at least if d>6d>6. This is in contrast to what one expects when the fields are enumerated by the discriminant. The main result of this article is an estimate for the number of algebraic numbers of degree d=end=e n and bounded height which generate a field that contains an unspecified subfield of degree ee. If n>max{e2+e,10}n>\max\{e^2+e,10\} we get the correct asymptotics as the height tends to infinity

    Assessment of probability of detection of delaminations in fiber-reinforced composites

    Get PDF
    Delamination is one of the critical defects in composite materials and structures. An ultrasonic C-scan imaging technique which maps out the acoustic impedance mismatched areas with respect to the sample coordinates, is particularly well suited for detecting and characterizing delaminations in composites. To properly interpret the results, it is necessary to correlate the indications with the detection limits and probability of detection (POD) of the ultrasonic C-scan imaging technique. The baseline information on the assessment of POD of delaminations in composite materials and structures is very beneficial to the evaluation of spacecraft materials. In this study, we review the principle of POD, describe the laboratory set-up and procedure, and present the experimental results as well as assessment of POD of delaminations in fiber reinforced composite panels using ultrasonic C-scan techniques

    Lagrangian Symmetries of Chern-Simons Theories

    Full text link
    This paper analyses the Noether symmetries and the corresponding conservation laws for Chern-Simons Lagrangians in dimension d=3d=3. In particular, we find an expression for the superpotential of Chern-Simons gravity. As a by-product the general discussion of superpotentials for 3rd order natural and quasi-natural theories is also given.Comment: 16 pages in LaTeX, some comments and references added. to appear in Journal of Physics A: Mathematical and Genera

    Fractional vortices and composite domain walls in flat nanomagnets

    Full text link
    We provide a simple explanation of complex magnetic patterns observed in ferromagnetic nanostructures. To this end we identify elementary topological defects in the field of magnetization: ordinary vortices in the bulk and vortices with half-integer winding numbers confined to the edge. Domain walls found in experiments and numerical simulations in strips and rings are composite objects containing two or more of the elementary defects.Comment: Minor changes: updated references and fixed typo

    Oscillatons formed by non linear gravity

    Full text link
    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.Comment: Revtex file, 6 pages, 3 eps figure; matches version published in PR

    The causal structure of spacetime is a parameterized Randers geometry

    Full text link
    There is a by now well-established isomorphism between stationary 4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries - these Randers geometries being a particular case of the more general class of 3-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes - the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (time-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page

    Evaluating Precipitation Features and Rainfall Characteristics in a Multi-scale Modeling Framework

    Get PDF
    Cloud and precipitation systems over the tropics and subtropics are simulated with a multi-scale modeling framework (MMF) and compared against the TRMM radar precipitation features (RPFs) product. A methodology, in close analogy to the TRMM RPFs, is developed to analyze simulated cloud precipitating structures from the embedded two-dimensional cloud-resolving models (CRMs) within an MMF. Despite the two-dimensionality of the CRMs, the simulated RPFs population distribution, and horizontal and vertical structure are in good agreement with TRMM observations. However, some deficits are also found in the model simulations. The model tends to overestimate mean convective precipitation rates for RPFs with a size less than 100 km, contributing to the excessive precipitation biases in the warm pool and western Pacific, western and northern India Ocean, and eastern Pacific commonly found in most MMFs. For large features with a size greater than 150 km, both convective and stratiform rain rates are underestimated. The distribution of maximum radar echo top heights as a function of RPF size is well simulated except the model tends to underestimate the occurrence frequency of maximum heights greater than 15 km. The maximum echo top heights for convective cells embedded within large RPFs with a size greater than 150 km are also underestimated. The cyclic lateral boundary with a limited model domain generates artificial occurrences for RPFs with a size close to the model domain size, producing a significant contribution to the total rainfall due to their sizes. This cyclic lateral boundary effect can be easily identified and quantified in both probability and cumulative distribution functions of RPFs. The geophysical distribution of the population of the largest RPFs in the control experiment shows they are mainly located in the Subtropics but also partially contribute to the common MMF biases of excessive precipitation in the Tropics. Sensitivity experiments using CRMs with different domain sizes and different grid spacings show larger domains (higher resolution) tend to shift the RPFs distribution to large (small) sizes. The cyclic lateral boundary biases increase as CRM domain size decreases. The impacts of model horizontal and vertical resolution on simulated convective systems are also investigated
    corecore