3 research outputs found

    Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli.

    Get PDF
    Although the TEM-1 β-lactamase (BlaTEM-1) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to β-lactam/β-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only blaTEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher β-lactamase activity and BlaTEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in blaTEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in blaTEM-1 gene dosage, allowing BlaTEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the blaTEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the blaTEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP.IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance. MBio 2018 Apr 24; 9(2):e00583-18

    Formate Acts as a Diffusible Signal To Induce Salmonella Invasion▿

    No full text
    To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal

    Perturbation of the Small Intestine Microbial Ecology by Streptomycin Alters Pathology in a Salmonella enterica Serovar Typhimurium Murine Model of Infection▿

    No full text
    The small intestine is an important site of infection for many enteric bacterial pathogens, and murine models, including the streptomycin-treated mouse model of infection, are frequently used to study these infections. The environment of the mouse small intestine and the microbiota with which enteric pathogens are likely to interact, however, have not been well described. Therefore, we compared the microbiota and the concentrations of short-chain fatty acids (SCFAs) present in the ileum and cecum of streptomycin-treated mice and untreated controls. We found that the microbiota in the ileum of untreated mice differed greatly from that of the cecum of the same mice, primarily among families of the phylum Firmicutes. Upon treatment with streptomycin, substantial changes in the microbial composition occurred, with a marked loss of population complexity. Characterization of the metabolic products of the microbiota, the SCFAs, showed that formate was present in the ileum but low or not detectable in the cecum while butyrate was present in the cecum but not the ileum. Treatment with streptomycin altered the SCFAs in the cecum, significantly decreasing the concentration of acetate, propionate, and butyrate. In this work, we also characterized the pathology of Salmonella infection in the ileum. Infection of streptomycin-treated mice with Salmonella was characterized by a significant increase in the relative and absolute levels of the pathogen and was associated with more severe ileal inflammation and pathology. Together these results provide a better understanding of the ileal environment in the mouse and the changes that occur upon streptomycin treatment
    corecore