3 research outputs found

    Pressurized hot water-assisted recovery of crude residual agar from a never-dried algae industry waste stream: A Box-Behnken design approach

    Get PDF
    The potential of using pressurized hot water extraction to valorize the remaining crude agar in Gelidium sesquipedale waste stream after an initial industrial extraction was investigated. In this process, a four-factor Box-Behnken design was coupled with a response surface methodology. The impact of the operating temperature (°C), the internal pressure (bar), the extraction time (min), and the algae concentration (% w: v), as well as their quadratic effects and two-way interactions, on the physicochemical properties of the residual agar, was analyzed. The yield (%), gel strength (g/cm2), gelling temperature (°C), melting temperature (°C), 3,6-anhydrogalactose content (%), and the sulfate content (%) were all considered in the evaluation. A multiple regression statistical model was used to fit all the experimental responses to a second-order polynomial equation that confirmed the suitability of the approach. Temperature of 120 °C, low pressure of 3.28 bar, and an extended extraction time of 150 min along with a 3% (w: v) algae concentration were projected to be optimum conditions for a high extraction yield of 17.03%. The strength of the recovered agar hydrogel oscillated between a minimum of 25 g/cm2 and a maximum of 350 g/cm2. The key parameters impacting the fluctuation of the sulfate content in the recovered agar (2% ≤ sulfate content ≤10%, with R2 = 79.8%) appeared to be the temperature and the algae concentration, in addition to the quadratic effect of the solid concentration. By adjusting the parameters, the process can accommodate the physicochemical properties of agar for wider range of applications.European Commission, Horizon 2020 program through the Marie-Curie Individual Fellowship (H2020-MSCA-IF-2019), with regards to the ALGWAS-BIOR project (Grant agreement number 898804). This work was also supported by the Junta de Castilla y León (JCyL) and the European Regional Development Fund (ERDF) [grant numbers BU301P18 and BU050P20]; as well as the Agencia Estatal de Investigación [grant number AEI /10.13039/501100011033]

    Antibiotic susceptibility profile of Streptococcus pneumoniae isolated from acute respiratory infection in Dakar: a cross sectional study

    Get PDF
    Streptococcus pneumoniae is a pathogen causing pneumonia, meningitis, otitis and bacteraemia. Nowadays, S. pneumoniae is developing antibacterial resistance, particularly for those with reduced susceptibility to penicillin. The objective of this study was to assess the susceptibility profile of S. pneumoniae strains isolated from acute respiratory infections (ARIs) in children younger than 5 years of age in Dakar, Senegal. S. pneumoniae strains were isolated from broncho-alveolar lavages (BALs), nasopharyngeal swabs, and middle ear secretion from children in the Paediatric Department of Abass Ndao University Teaching Hospital and Paediatric Department of Roi Baudouin Hospital in Dakar, Senegal. The strains were cultivated on Columbia agar supplemented with 5% of horse blood and gentamicin (6 mg/L). Antibiotic susceptibility testing was performed using E-test method. A total of 34 strains of S. pneumoniae were isolated and identified in this study, among them 7 strains (20.58%) showed penicillin-resistance. Antibiotics such as amoxicillin/clavulanic acid (MIC90=0.036 μg/mL), cefuroxim (MIC90=0.38 μg/mL), cefixim (MIC90=1.5 μg/mL), as well as macrolides (azithromycin MIC90=1.5 μg/mL, clarithromycin MIC90=0.125 μg/mL) and fluoroquinolone (levofloxacin MIC90=1 μg/mL, ofloxacin MIC90=2 μg/mL) were mostly active. However, all S. pneumoniae strains were resistant to sulfamethoxazole/trimethoprim (MIC90: 32 μg/mL). Except of S. pneumoniae strains penicillin-resistance or reduced susceptibility, most strains were susceptible to β-lactams antibiotics commonly used in ARI treatment. Continuous surveillance of antimicrobial resistance patterns of pneumococcus strains is still crucial for effective control of ARIs in children

    Adjustable Gel Texture of Recovered Crude Agar Induced by Pressurized Hot Water Treatment of Gelidium sesquipedale Industry Waste Stream: An RSM Analysis

    No full text
    A significant amount of bioactive compound-rich solid waste is released during the industrial phycocolloid-centric extraction of Gelidium sesquipedale. The impact of mild pressurized hot water extraction on repurposing this waste for the recovery of agar with an adjustable gel texture is investigated. A two-factor interaction response surface model assessed the influences of the operating temperatures (80 to 130 °C), times (45 and 150 min), pressures (1 to 70 bar), and algae concentrations (3 to 10% (w:v)). At a temperature of 100 °C, a pressure of 10.13 bar, a recovery time of 45 min, and a 10% algae concentration, the working parameters were considered ideal (w:v). Agar with a hardness of 431.6 g, an adhesiveness of −13.14 g.s−1, a springiness of 0.94, a cohesiveness of 0.63, and a gumminess of 274.46 g was produced under these conditions. A combined desirability of 0.78 was obtained for the exposed technology that retrieved gels with a minimum agar yield of 10% and thermal hysteresis between 39 ± 1 and 52 ± 0.5 °C. The fitted design can provide a high techno-commercial value to the agri-food industrial waste stream
    corecore