44 research outputs found

    Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease

    Get PDF
    INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden

    Interpretation of Digital Mammograms: Comparison of Speed and Accuracy of Soft-Copy versus Printed-Film Display

    Get PDF
    PURPOSE: To compare the speed and accuracy of the interpretations of digital mammograms by radiologists by using printed-film versus soft-copy display. MATERIALS AND METHODS: After being trained in interpretation of digital mammograms, eight radiologists interpreted 63 digital mammograms, all with old studies for comparison. All studies were interpreted by all readers in soft-copy and printed-film display, with interpretations of images in the same cases at least 1 month apart. Mammograms were interpreted in cases that included six biopsy-proved cancers and 20 biopsy-proved benign lesions, 20 cases of probably benign findings in patients who underwent 6-month follow-up, and 17 cases without apparent findings. Area under the receiver operating characteristic curve (Az), sensitivity, and specificity were calculated for soft-copy and printed-film display. RESULTS: There was no significant difference in the speed of interpretation, but interpretations with soft-copy display were slightly faster. The differences in Az, sensitivity, and specificity were not significantly different; Az and sensitivity were slightly better for interpretations with printed film, and specificity was slightly better for interpretations with soft copy. CONCLUSION: Interpretation with soft-copy display is likely to be useful with digital mammography and is unlikely to significantly change accuracy or speed

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    "All is not lost" - Rethinking the nature of memory and the self in dementia

    No full text
    Memory and the self have long been considered intertwined, leading to the common assumption that without memory, there can be no self. This line of reasoning has led to the common misconception that a loss of memory in dementia necessarily results in a diminished sense of self. Here, we challenge this assumption by considering discrete facets of the self, and their relative profiles of loss and sparing, across three neurodegenerative disorders: Alzheimer’s disease, semantic dementia, and frontotemporal dementia. By exploring canonical expressions of the self across past, present, and future contexts in dementia, relative to healthy ageing, we reconcile previous accounts of loss of self in dementia, and propose a new framework for understanding and managing everyday functioning and behaviour. Notably, our approach highlights the multifaceted and dynamic nature in which the self is likely to change in healthy and pathological ageing, with important ramifications for development of person-centred care. Collectively, we aim to promote a cohesive sense of self in dementia across past, present, and future contexts, by demonstrating how, ultimately, ‘All is not lost’

    Fronto-parietal contributions to episodic retrieval – evidence from neurodegenerative disorders

    No full text
    Converging evidence suggests a critical role for the parietal cortices in episodic memory retrieval. Here, we examined episodic memory performance in Corticobasal Syndrome (CBS), a rare neurodegenerative disorder presenting with early parietal atrophy in the context of variable medial temporal lobe damage. Forty-four CBS patients were contrasted with 29 typical Alzheimer’s disease (AD), 29 healthy Controls, and 20 progressive supranuclear palsy patients presenting with brainstem atrophy as a disease control group. Participants completed standardised assessments of verbal episodic memory (learning, delayed recall, and recognition), and underwent structural and diffusion-weighted MRI. Selective delayed recall deficits were evident in the CBS group relative to Controls, at an intermediate level to the stark amnesia displayed by AD, and Control-level performance noted in progressive supranuclear palsy. Considerable variability within the CBS group on delayed recall performance led to the identification of memory-spared (N = 19) and memory-impaired (N = 25) subgroups. Whereas CBS-Spared showed no significant memory deficits, the CBS-Impaired subgroup were indistinguishable from typical AD across all episodic memory measures. Whole-brain voxel-based morphometry analyses implicated fronto-parietal and medial temporal regions in delayed recall performance in both the CBS-Impaired and AD groups. Furthermore, diffusion tensor imaging analyses revealed correlations between delayed recall performance and altered structural connectivity between fronto-parietal and fronto-temporal regions in the CBS-Impaired group. Our findings underscore the importance of a distributed brain network including frontal, medial temporal and parietal brain regions in supporting the capacity for successful episodic memory retrieval

    Exploring the contribution of visual imagery to scene construction – evidence from Posterior Cortical Atrophy

    No full text
    Posterior Cortical Atrophy (PCA) is a rare neurodegenerative syndrome characterised by profound visuoperceptual processing disturbances, attributable to focal parieto-occipital cortical atrophy. Despite relative sparing of the medial temporal lobes, converging evidence reveals significant autobiographical memory impairments in this syndrome, underscoring the crucial role of visual imagery for episodic memory processes. The contribution of visual imagery to complex constructive endeavours, however, remains unclear. Here, we investigated the capacity for atemporal scene construction in 5 well-characterised cases of PCA and contrasted their performance with 10 typical amnestic Alzheimer’s Disease (AD) and 10 healthy older Control participants. Behavioural data were analysed using case-Control statistics comparing each PCA patient’s scene construction scores to the mean scores of AD and Control groups. In keeping with their clinical phenotype, PCA patients demonstrated significant visuoperceptual and episodic memory impairments on standard neuropsychological tasks. Scene construction performance was grossly impaired in PCA, at a level comparable to that observed in the AD group, manifesting in impoverished and spatially fragmented scenes. Structural neuroimaging confirmed prominent grey matter intensity decrease predominantly in posterior cortical regions in PCA, in the absence of frank hippocampal atrophy. Using an a priori motivated region-of-interest approach across all participants, scene construction performance was found to correlate with grey matter intensity in the left angular gyrus, right precuneus, and right hippocampus. This study is the first to reveal compromised scene construction capacity in PCA, extending our understanding of the cognitive profile of this rare syndrome and pointing towards the fundamental contribution of visual imagery to atemporal forms of imagination

    Characterisation of the small RNAs in the biomedically important green-bottle blowfly Lucilia sericata.

    No full text
    The green bottle fly maggot, Lucilia sericata, is a species with importance in medicine, agriculture and forensics. Improved understanding of this species' biology is of great potential benefit to many research communities. MicroRNAs (miRNA) are a short non-protein coding regulatory RNA, which directly regulate a host of protein coding genes at the translational level. They have been shown to have developmental and tissue specific distributions where they impact directly on gene regulation. In order to improve understanding of the biology of L. sericata maggots we have performed small RNA-sequencing of their secretions and tissue at different developmental stages.We have successfully isolated RNA from the secretions of L. sericata maggots. Illumina small RNA-sequencing of these secretions and the three tissues (crop, salivary gland, gut) revealed that the most common small RNA fragments were derived from ribosomal RNA and transfer RNAs of both insect and bacterial origins. These RNA fragments were highly specific, with the most common tRNAs, such as GlyGCC, predominantly represented by reads derived from the 5' end of the mature maggot tRNA. Each library also had a unique profile of miRNAs with a high abundance of miR-10-5p in the maggot secretions and gut and miR-8 in the food storage organ the crop and salivary glands. The pattern of small RNAs in the bioactive maggot secretions suggests they originate from a combination of saliva, foregut and hindgut tissues. Droplet digital RT-PCR validation of the RNA-sequencing data shows that not only are there differences in the tissue profiles for miRNAs and small RNA fragments but that these are also modulated through developmental stages of the insect.We have identified the small-RNAome of the medicinal maggots L. sericata and shown that there are distinct subsets of miRNAs expressed in specific tissues that also alter during the development of the insect. Furthermore there are very specific RNA fragments derived from other non-coding RNAs present in tissues and in the secretions. This new knowledge has applicability in diverse research fields including wound healing, agriculture and forensics
    corecore