1,030 research outputs found

    Nuclear prolate-shape dominance with the Woods-Saxon potential

    Full text link
    We study the prolate-shape predominance of the nuclear ground-state deformation by calculating the masses of more than two thousand even-even nuclei using the Strutinsky method, modified by Kruppa, and improved by us. The influences of the surface thickness of the single-particle potentials, the strength of the spin-orbit potential, and the pairing correlations are investigated by varying the parameters of the Woods-Saxon potential and the pairing interaction. The strong interference between the effects of the surface thickness and the spin-orbit potential is confirmed to persist for six sets of the Woods-Saxon potential parameters. The observed behavior of the ratios of prolate, oblate, and spherical nuclei versus potential parameters are rather different in different mass regions. It is also found that the ratio of spherical nuclei increases for weakly bound unstable nuclei. Differences of the results from the calculations with the Nilsson potential are described in detail.Comment: 16 pages, 17 figure

    Nuclear reactions in hot stellar matter and nuclear surface deformation

    Full text link
    Cross-sections for capture reactions of charged particles in hot stellar matter turn out be increased by the quadrupole surface oscillations, if the corresponding phonon energies are of the order of the star temperature. The increase is studied in a model that combines barrier distribution induced by surface oscillations and tunneling. The capture of charged particles by nuclei with well-deformed ground-state is enhanced in stellar matter. It is found that the influence of quadrupole surface deformation on the nuclear reactions in stars grows, when mass and proton numbers in colliding nuclei increase.Comment: 12 pages, 10 figure

    Momentum distribution in heavy deformed nuclei: role of effective mass

    Full text link
    The impact of nuclear deformation on the momentum distributions (MD) of occupied proton states in 238^{238}U is studied with a phenomenological Woods-Saxon (WS) shell model and the self-consistent Skyrme-Hartree-Fock (SHF) scheme. Four Skyrme parameterizations (SkT6, SkM*, SLy6, SkI3) with different effective masses are used. The calculations reveal significant deformation effects in the low-momentum domain of Kπ=1/2±K^{\pi}=1/2^{\pm} states, mainly of those lying near the Fermi surface. For other states, the deformation effect on MD is rather small and may be neglected. The most remarkable result is that the very different Skyrme parameterizations and the WS potential give about identical MD. This means that the value of effective mass, being crucial for the description of the spectra, is not important for the spatial shape of the wave functions and thus for the MD. In general, it seems that, for the description of MD at 0k3000\le k \le 300 MeV/c, one may use any single-particle scheme (phenomenological or self-consistent) fitted properly to the global ground state properties.Comment: 14 pages, 6 figure

    Molecular structure of highly-excited resonant states in 24^{24}Mg and the corresponding 8^8Be+16^{16}O and 12^{12}C+12^{12}C decays

    Full text link
    Exotic 8^8Be and 12^{12}C decays from high-lying resonances in 24^{24}Mg are analyzed in terms of a cluster model. The calculated quantities agree well with the corresponding experimental data. It is found that the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster. It is shown that this property makes cluster decay a powerful tool to determine the spin as well as the molecular structures of the resonances.Comment: 17 pages, no figur

    A Particle number conserving shell-correction method

    Full text link
    The shell correction method is revisited. Contrary to the traditional Strutinsky method, the shell energy is evaluated by an averaging over the number of particles and not over the single-particle energies, which is more consistent with the definition of the macroscopic energy. In addition, the smooth background is subtracted before averaging the sum of single-particle energies, which significantly improves the plateau condition and allows to apply the method also for nuclei close to the proton or neutron drip lines. A significant difference between the shell correction energy obtained with the traditional and the new method is found in particular for highly degenerated single-particle spectra (as i.e. in magic nuclei) while for deformed nuclei (where the degeneracy is lifted to a large extent) both estimates are close, except in the region of super or hyper-deformed states.Comment: 11 pages in LaTeX, 7 figure

    Nuclear Magnetic Quadrupole Moments in Single Particle Approximation

    Full text link
    A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd nucleon-nucleon interaction, is investigated in the single-particle approximation. Models are considered allowing for analytical solution. The problem is also treated numerically in a Woods-Saxon potential with spin-orbit interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from "[email protected]". BINP 94-4

    Semiconductor driver of pyroelectric accelerator of charged particles

    Get PDF
    The possibility for application of semiconductor element for heating of pyroelectric crystalin a pyroelectric accelerator of charged particles or pyroelectric X-ray generator is at first proposed and demonstrated experimentally. Spectra of X-ray radiation measured at the heating of the pyroelectric crystal LiNbO3 by silicon diode at different pressures of residual gas are presente

    Conservation of diatom biodiversity: issues and prospects

    Get PDF
    The diatoms are microscopic unicellular plants, which in spite of their tiny size (normally within the range of 0.01-0.1 mm) play an enormous role in the functioning of the biosphere. Their contribution to the global production of organic matter created on Earth through photosynthesis is estimated as 20-25%. Very recently, the results of sensitive, fine-grained taxonomical, biological and biogeographical studies have provided strong evidence that the widely accepted dogma that microorganisms are predominantly cosmopolitan does not apply in case of the diatoms. Many diatom species may be endemics and some of them seem to be restricted to a small geographical area, which makes conservation of diatoms a significant issue. It is time to realise that efforts to develop realistic conservation strategies for aquatic environments, both at the local and global scale should include the diatoms and possibly also other groups of microorganisms. Some ways of how the diatoms could be involved in this process are presented for discussion

    Improved microscopic-macroscopic approach incorporating the effects of continuum states

    Full text link
    The Woods-Saxon-Strutinsky method (the microscopic-macroscopic method) combined with Kruppa's prescription for positive energy levels, which is necessary to treat neutron rich nuclei, is studied to clarify the reason for its success and to propose improvements for its shortcomings. The reason why the plateau condition is met for the Nilsson model but not for the Woods-Saxon model is understood in a new interpretation of the Strutinsky smoothing procedure as a low-pass filter. Essential features of Kruppa's level density is extracted in terms of the Thomas-Fermi approximation modified to describe spectra obtained from diagonalization in truncated oscillator bases. A method is proposed which weakens the dependence on the smoothing width by applying the Strutinsky smoothing only to the deviations from a reference level density. The BCS equations are modified for the Kruppa's spectrum, which is necessary to treat the pairing correlation properly in the presence of continuum. The potential depth is adjusted for the consistency between the microscopic and macroscopic Fermi energies. It is shown, with these improvements, that the microscopic-macroscopic method is now capable to reliably calculate binding energies of nuclei far from stability.Comment: 66 pages, 29 figures, 1 tabl
    corecore