4 research outputs found

    NMR study of trialuminide intermetallics

    Get PDF
    We present a systematic study of the DO22-structure trialuminide intermetallic alloys using 27Al NMR spectroscopy. The quadrupole splittings, Knight shifts, and spin-lattice relaxation times on Al3Ti, Al3V, Al3Nb, and Al3Ta have been identified. Knight-shift tensors were isolated by observation of quadrupole satellite lines and fitting to the central-transition powder patterns. The results are associated with the local electronic density of states for each crystallographic site. Universally small isotropic Knight shifts and long T1’s are consistent with low Fermi-surface densities of states indicating the importance of Fermi-surface features for the phase stability of these alloys. Larger anisotropic Knight shifts occurring at aluminum site I indicate strong hybridization at this site, and the electric-field-gradient tensors confirm the strong ab plane bonding configuration. Local-moment magnetism is found in Al3V, yet electrically this material appears very similar to the other DO22 aluminides

    Magnetic-field effects in NbSe3

    Get PDF
    We have performed NMR studies on an aligned, multicrystalline NbSe3 sample at various temperatures. We find conclusive evidence of field-induced Fermi-surface changes at low temperatures, and associate these changes with charge-density-wave (CDW) enhancement mainly localized on the yellow crystallographic site, contrary to expectations, since the low-temperature CDW is mainly localized on the orange site

    Electrodeionization Using Microseparated Bipolar Membranes

    Get PDF
    An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum
    corecore