2,936 research outputs found

    First-order nature of the ferromagnetic phase transition in (La-Ca)MnO_3 near optimal doping

    Full text link
    Neutron scattering has been used to study the nature of the ferromagnetic transition in single crystals of La_0.7Ca_0.3MnO_3 and La_0.8Ca_0.2MnO_3, and polycrystalline samples of La_0.67Ca_0.33MnO_3 and La_5/8Ca_3/8MnO_3 where the naturally occurring O-16 can be replaced with the O-18 isotope. Small angle neutron scattering on the x=0.3 single crystal reveals a discontinuous change in the scattering at the Curie temperature for wave vectors below ~0.065 A^-1. Strong relaxation effects are observed for this domain scattering, for the magnetic order parameter, and for the quasielastic scattering, demonstrating that the transition is not continuous in nature. There is a large oxygen isotope effect observed for the T_C in the polycrystalline samples. For the optimally doped x=3/8 sample we observed T_C(O-16)=266.5 K and T_C(O-18)=261.5 K at 90% O-18 substitution. The temperature dependence of the spin-wave stiffness is found to be identical for the two samples despite changes in T_C. Hence, T_C is not solely determined by the magnetic subsystem, but instead the ferromagnetic phase is truncated by the formation of polarons which cause an abrupt transition to the paramagnetic, insulating state. Application of uniaxial stress in the x=0.3 single crystal sharply enhances the polaron scattering at room temperature. Measurements of the phonon density-of-states show only modest differences above and below T_C and between the two different isotopic samples.Comment: 13 pages, 16 figures, submitted to Phys. Rev.

    Interplay of charge and spin correlations in nickel perovskites

    Full text link
    Analyzing the motion of low--spin (s=1/2)(s=1/2) holes in a high--spin (S=1)(S=1) background, we derive a sort of generalized t--J Hamiltonian for the NiO2\rm NiO_2 planes of Sr--doped nickelates. In addition to the rather complex carrier--spin and spin--spin couplings we take into account the coupling of the doped holes to in--plane oxygen breathing modes by a Holstein--type interaction term. Because of strong magnetic confinement effects the holes are nearly entirely prelocalized and the electron--phonon coupling becomes much more effective in forming polarons than in the isostructural cuprates. In the light of recent experiments on La2−xSrxNiO4\rm La_{2-x}Sr_xNiO_4 we discuss how the variety of the observed transport and charge/spin--ordering phenomena can be qualitatively understood in terms of our model Hamiltonian.Comment: 2 pages, LTpaper.sty, Proc. XXI Int. Conf. on Low Temp. Phys. Prague 9

    X-ray induced electronic structure change in CuIr2_2S4_4

    Full text link
    The electronic structure of CuIr2_2S4_4 has been investigated using various bulk-sensitive x-ray spectroscopic methods near the Ir L3L_3-edge: resonant inelastic x-ray scattering (RIXS), x-ray absorption spectroscopy in the partial fluorescence yield (PFY-XAS) mode, and resonant x-ray emission spectroscopy (RXES). A strong RIXS signal (0.75 eV) resulting from a charge-density-wave gap opening is observed below the metal-insulator transition temperature of 230 K. The resultant modification of electronic structure is consistent with the density functional theory prediction. In the spin- and charge- dimer disordered phase induced by x-ray irradiation below 50 K, we find that a broad peak around 0.4 eV appears in the RIXS spectrum.Comment: 4 pages and 4 figure

    Electromagnons in multiferroic YMn2O5 and TbMn2O5

    Full text link
    Based on temperature dependent far infrared transmission spectra of YMn2O5 and TbMn2O5 single crystals, we report the observation of electric dipole-active magnetic excitations, or electromagnons, in these multiferroics. Electromagnons are found to be directly responsible for the step-like anomaly of the static dielectric constant at the commensurate--incommensurate magnetic transition and are the origin of the colossal magneto-dielectric effect reported in these multiferroics.Comment: 4 pages, 4 figures, submitte

    Strengthening the Cohomological Crepant Resolution Conjecture for Hilbert-Chow morphisms

    Full text link
    Given any smooth toric surface S, we prove a SYM-HILB correspondence which relates the 3-point, degree zero, extended Gromov-Witten invariants of the n-fold symmetric product stack [Sym^n(S)] of S to the 3-point extremal Gromov-Witten invariants of the Hilbert scheme Hilb^n(S) of n points on S. As we do not specialize the values of the quantum parameters involved, this result proves a strengthening of Ruan's Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphism from Hilb^n(S) to Sym^n(S) and yields a method of reconstructing the cup product for Hilb^n(S) from the orbifold invariants of [Sym^n(S)].Comment: Revised versio

    Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4

    Full text link
    Commensurability effects for nickelates have been studied by the first neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO2_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a "stripe glass" which resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to [email protected]

    Structural and Magnetic Characterization of Large Area, Free-Standing Thin Films of Magnetic Ion Intercalated Dichalcogenides Mn0.25TaS2 and Fe0.25TaS2

    Get PDF
    Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30nm to 250nm were achieved and characterized using transmission electron diffraction and X-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast X-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time
    • …
    corecore