552 research outputs found

    Avian Influenza: a global threat needing a global solution

    Get PDF
    There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical

    Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    Get PDF
    CONTEXT: Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. CASE PRESENTATION: Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. DISCUSSION: Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. RELEVANCE TO CLINICAL OR PROFESSIONAL PRACTICE: In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent

    Rough paths in idealized financial markets

    Full text link
    This paper considers possible price paths of a financial security in an idealized market. Its main result is that the variation index of typical price paths is at most 2, in this sense, typical price paths are not rougher than typical paths of Brownian motion. We do not make any stochastic assumptions and only assume that the price path is positive and right-continuous. The qualification "typical" means that there is a trading strategy (constructed explicitly in the proof) that risks only one monetary unit but brings infinite capital when the variation index of the realized price path exceeds 2. The paper also reviews some known results for continuous price paths and lists several open problems.Comment: 21 pages, this version adds (in Appendix C) a reference to new results in the foundations of game-theoretic probability based on Hardin and Taylor's work on hat puzzle

    Improved Cell Survival and Paracrine Capacity of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells Promote Therapeutic Potential for Pulmonary Arterial Hypertension.

    Get PDF
    Although transplantation of adult bone marrow mesenchymal stem cells (BM-MSCs) holds promise in the treatment for pulmonary arterial hypertension (PAH), the poor survival and differentiation potential of adult BM-MSCs have limited their therapeutic efficiency. Here, we compared the therapeutic efficacy of human embryonic stem cell-derived MSCs (hESC-MSCs) with adult BM-MSCs for the treatment of PAH in an animal model. One week following monocrotaline (MCT)-induced PAH, mice were randomly assigned to receive phosphate-buffered saline (MCT group); 3.0×106 human BM-derived MSCs (BM-MSCs group) or 3.0 ×106 hESC-derived MSCs (hESC-MSCs group) via tail vein injection. At 3 weeks posttransplantation, the right ventricular systolic pressure (RVSP), degree of RV hypertrophy, and medial wall thickening of pulmonary arteries were lower=, and pulmonary capillary density was higher in the hESC-MSC group as compared with BM-MSC and MCT groups (all p < 0.05). At 1 week posttransplantation, the number of engrafted MSCs in the lungs was found significantly higher in the hESC-MSC group than in the BM-MSC group (all p < 0.01). At 3 weeks posttransplantation, implanted BM-MSCs were undetectable whereas hESC-MSCs were not only engrafted in injured pulmonary arteries but had also undergone endothelial differentiation. In addition, protein profiling of hESC-MSC- and BM-MSC-conditioned medium revealed a differential paracrine capacity. Classification of these factors into bioprocesses revealed that secreted factors from hESC-MSCs were preferentially involved in early embryonic development and tissue differentiation, especially blood vessel morphogenesis. We concluded that improved cell survival and paracrine capacity of hESC-MSCs provide better therapeutic efficacy than BM-MSCs in the treatment for PAH. © 2012 Cognizant Comm. Corp.published_or_final_versio

    Relationship between cortical state and spiking activity in lateral geniculate nucleus of anaesthetised marmosets

    Get PDF
    The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance, and attention. Here we asked how on-going and visually driven activity in magnocellular (M), parvocellular (P), and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil-anesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta-band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multi-second timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1-3 s, implying causality. At sub-second timescales, the spiking activity in many cells of all (M, P, and K) classes is phase-locked to delta waves in the cortical LFP, and more cells are phase-locked during synchronous cortical states than during asynchronous cortical states. The switch from low-to-high spike rates in K cells does not degrade their visual signalling capacity. To the contrary, during asynchronous cortical states the fidelity of visual signals transmitted by K cells is improved, likely because K cell responses become less rectified. Overall the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta-frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetised marmosets. This article is protected by copyright. All rights reserved

    Improved Cell Survival and Paracrine Capacity of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells Promote Therapeutic Potential for Pulmonary Arterial Hypertension.

    Get PDF
    Although transplantation of adult bone marrow mesenchymal stem cells (BM-MSCs) holds promise in the treatment for pulmonary arterial hypertension (PAH), the poor survival and differentiation potential of adult BM-MSCs have limited their therapeutic efficiency. Here, we compared the therapeutic efficacy of human embryonic stem cell-derived MSCs (hESC-MSCs) with adult BM-MSCs for the treatment of PAH in an animal model. One week following monocrotaline (MCT)-induced PAH, mice were randomly assigned to receive phosphate-buffered saline (MCT group); 3.0×106 human BM-derived MSCs (BM-MSCs group) or 3.0 ×106 hESC-derived MSCs (hESC-MSCs group) via tail vein injection. At 3 weeks posttransplantation, the right ventricular systolic pressure (RVSP), degree of RV hypertrophy, and medial wall thickening of pulmonary arteries were lower=, and pulmonary capillary density was higher in the hESC-MSC group as compared with BM-MSC and MCT groups (all p < 0.05). At 1 week posttransplantation, the number of engrafted MSCs in the lungs was found significantly higher in the hESC-MSC group than in the BM-MSC group (all p < 0.01). At 3 weeks posttransplantation, implanted BM-MSCs were undetectable whereas hESC-MSCs were not only engrafted in injured pulmonary arteries but had also undergone endothelial differentiation. In addition, protein profiling of hESC-MSC- and BM-MSC-conditioned medium revealed a differential paracrine capacity. Classification of these factors into bioprocesses revealed that secreted factors from hESC-MSCs were preferentially involved in early embryonic development and tissue differentiation, especially blood vessel morphogenesis. We concluded that improved cell survival and paracrine capacity of hESC-MSCs provide better therapeutic efficacy than BM-MSCs in the treatment for PAH. © 2012 Cognizant Comm. Corp.published_or_final_versio

    Disconnection of pulmonary and systemic arterial stiffness in COPD.

    Get PDF
    BACKGROUND: Both pulmonary arterial stiffening and systemic arterial stiffening have been described in COPD. The aim of the current study was to assess pulse wave velocity (PWV) within these two arterial beds to determine whether they are separate or linked processes. MATERIALS AND METHODS: In total, 58 participants with COPD and 21 healthy volunteers (HVs) underwent cardiac magnetic resonance imaging (MRI) and were tested with a panel of relevant biomarkers. Cardiac MRI was used to quantify ventricular mass, volumes, and pulmonary (pulse wave velocity [pPWV] and systemic pulse wave velocity [sPWV]). RESULTS: Those with COPD had higher pPWV (COPD: 2.62 vs HV: 1.78 ms-1, p=0.006), higher right ventricular mass/volume ratio (RVMVR; COPD: 0.29 vs HV: 0.25 g/mL, p=0.012), higher left ventricular mass/volume ratio (LVMVR; COPD: 0.78 vs HV: 0.70 g/mL, p=0.009), and a trend toward a higher sPWV (COPD: 8.7 vs HV: 7.4 ms-1, p=0.06). Multiple biomarkers were elevated: interleukin-6 (COPD: 1.38 vs HV: 0.58 pg/mL, p=0.02), high-sensitivity C-reactive protein (COPD: 6.42 vs HV: 2.49 mg/L, p=0.002), surfactant protein D (COPD: 16.9 vs HV: 9.13 ng/mL, p=0.001), N-terminal pro-brain natriuretic peptide (COPD: 603 vs HV: 198 pg/mL, p=0.001), and high-sensitivity troponin I (COPD: 2.27 vs HV: 0.92 pg/mL, p<0.001). There was a significant relationship between sPWV and LVMVR (p=0.01) but not pPWV (p=0.97) nor between pPWV and RVMVR (p=0.27). CONCLUSION: Pulmonary arterial stiffening and systemic arterial stiffening appear to be disconnected and should therefore be considered independent processes in COPD. Further work is warranted to determine whether both these cause an increased morbidity and mortality and whether both can be targeted by similar pharmacological therapy or whether different strategies are required for each

    Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling.

    Get PDF
    BACKGROUND: Pulmonary pulse wave velocity (PWV) allows the non-invasive measurement of pulmonary arterial stiffening, but has not previously been assessed in COPD. The aim of the current study was to assess PWV in COPD and its association with right ventricular (RV) remodelling. METHODS: Fifty-eight participants with COPD underwent pulmonary function tests, 6-min walk test and cardiac MRI, while 21 healthy controls (HCs) underwent cardiac MRI. Thirty-two COPD patients underwent a follow-up MRI to assess for longitudinal changes in RV metrics. Cardiac MRI was used to quantify RV mass, volumes and PWV. Differences in continuous variables between the COPD and HC groups was tested using an independent t-test, and associations between PWV and right ventricular parameters was examined using Pearson's correlation coefficient. RESULTS: Those with COPD had reduced pulsatility (COPD (mean±SD):24.88±8.84% vs. HC:30.55±11.28%, p=0.021), pulmonary acceleration time (COPD:104.0±22.9ms vs. HC: 128.1±32.2ms, p<0.001), higher PWV (COPD:2.62±1.29ms-1 vs. HC:1.78±0.72ms-1, p=0.001), lower RV end diastolic volume (COPD:53.6±11.1ml vs. HC:59.9±13.0ml, p=0.037) and RV stroke volume (COPD:31.9±6.9ml/m2 vs. HC:37.1±6.2ml/m2, p=0.003) with no difference in mass (p=0.53). PWV was not associated with right ventricular parameters. CONCLUSIONS: While pulmonary vascular remodelling is present in COPD, cardiac remodelling favours reduced filling rather than increased afterload. Treatment of obstructive lung disease may have greater effect on cardiac function than treatment of pulmonary vascular disease in most COPD patients KEY POINTS: • Pulmonary pulse wave velocity (PWV) is elevated in COPD. • Pulmonary PWV is not associated with right ventricular remodelling. • Right ventricular remodelling is more in keeping with that of reduced filling

    Bioactive compounds of plum mango (Bouea macrophylla Griffith)

    Get PDF
    The fruit of Bouea macrophylla referred as Plum mango or Gandaria is a popular seasonal fruit, which is widely consumed in the Malay subcontinent. There is ample of traditional knowledge available among the locals on the use of leaves, bark, fruits and seeds of this plant. However, very limited research information and scientific report is available on their composition, phytochemicals or on the bioactive compounds. In the present chapter, we have aimed towards comprehensively providing information on nutritional value, functional qualities, health promoting bioactive compounds and volatile constituents of this underutilized fruit
    corecore