16 research outputs found

    Frustum PointNets for 3D Object Detection from RGB-D Data

    Full text link
    In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.Comment: 15 pages, 12 figures, 14 table

    Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    Get PDF
    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering

    Identify the Key Active Ingredients and Pharmacological Mechanisms of Compound XiongShao Capsule in Treating Diabetic Peripheral Neuropathy by Network Pharmacology Approach

    No full text
    Compound XiongShao Capsule (CXSC), a traditional herb mixture, has shown significant clinical efficacy against diabetic peripheral neuropathy (DPN). However, its multicomponent and multitarget features cause difficulty in deciphering its molecular mechanisms. Our study aimed to identify the key active ingredients and potential pharmacological mechanisms of CXSC in treating DPN by network pharmacology and provide scientific evidence of its clinical efficacy. CXSC active ingredients were identified from both the Traditional Chinese Medicine Systems Pharmacology database, with parameters of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, and the Herbal Ingredients’ Targets (HIT) database. The targets of those active ingredients were identified using ChemMapper based on 3D-structure similarity and using HIT database. DPN-related genes were acquired from microarray dataset GSE95849 and five widely used databases (TTD, Drugbank, KEGG, DisGeNET, and OMIM). Next, we obtained candidate targets with therapeutic effects against DPN by mapping active ingredient targets and DPN-related genes and identifying the proteins interacting with those candidate targets using STITCH 5.0. We constructed an “active ingredients-candidate targets-proteins” network using Cytoscape 3.61 and identified key active ingredients and key targets in the network. We identified 172 active ingredients in CXSC, 898 targets of the active ingredients, 110 DPN-related genes, and 38 candidate targets with therapeutic effects against DPN. Three key active ingredients, namely, quercetin, kaempferol, and baicalein, and 25 key targets were identified. Next, we input all key targets into ClueGO plugin for KEGG enrichment and molecular function analyses. The AGE-RAGE signaling pathway in diabetic complications and MAP kinase activity were determined as the main KEGG pathway and molecular function involved, respectively. We determined quercetin, kaempferol, and baicalein as the key active ingredients of CXSC and the AGE-RAGE signaling pathway and MAP kinase activity as the main pharmacological mechanisms of CXSC against DPN, proving the clinical efficacy of CXSC against DPN

    Preparation and Properties of Salecan–Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase

    No full text
    Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal–SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture properties, and the microstructure of the hydrogel was evaluated. As Sal concentration varied from 0.4 to 0.6 wt%, hydrogel elasticity increased from 0.49 to 0.85 mm. Furthermore, the internal network structure of Sal–SPI composite hydrogel also became denser and more uniform as Sal concentration increased. Rheological studies showed that Sal–SPI elastic hydrogel formed under the gelation process. Additionally, FTIR and XRD results demonstrated that hydrogen bonds formed between Sal and SPI molecules, inferring the formation of the interpenetrating network structure. This research supplied a green and simple method to fabricate Sal–SPI double network hydrogels

    Synthesis and Rheological Characterization of a Novel Salecan Hydrogel

    No full text
    Salecan (Sal) is a novel microbial polysaccharide. In the present research, thermal treatment was performed to fabricate Sal hydrogel. The effect of Sal concentration on water holding capacity, swelling properties, texture properties, and microstructure of the hydrogels was discussed. It was found that the equilibrium degree of swelling (EDS) of Sal hydrogels was above 1500%, inferred Sal was a highly hydrophilic polysaccharide. As Sal concentration increased from 3.5 to 8.0 wt%, the hardness increased from 0.88 to 2.07 N and the water hold capability (WHC) increased from 91.3% to 98.2%. Furthermore, the internal network structure of Sal hydrogel also became denser and more uniform. Rheological studies suggested that elastic hydrogel formed under the gelation process. All these results demonstrated that Sal hydrogel prepared by thermal treatment had good gelling properties, which opened up a new safe way for the preparation of Sal hydrogel and broadened the application range of Sal

    The Preparation of Anti-Ultraviolet Composite Films Based on Fish Gelatin and Sodium Alginate Incorporated with Mycosporine-like Amino Acids

    No full text
    Mycosporine-like amino acids (MAAs) are ultraviolet-absorbing compounds and have antioxidant functions. In this paper, MAAs were added into fish gelatin/sodium alginate films as an anti-ultraviolet additive. The effects of 0–5% MAAs (w/w, MAAs/fish gelatin) on the physical properties, antioxidant properties, antibacterial properties and anti-ultraviolet properties of fish gelatin/sodium alginate films were investigated. The results suggest that the content of the MAAs influenced the mechanical properties. The water content, swelling and water vapor permeability of the films were not altered with the addition of MAAs. In addition, the composite films showed effective antioxidant activity and antimicrobial activity. The incorporation of MAAs significantly improved the DPPH radical scavenging activity of the films from 35.77% to 46.61%. Moreover, the block ultraviolet rays’ ability was also greatly improved when the film mixed with the MAAs and when the value of the light transmission was 0.6% at 350 nm. Compared with the pure composite film, the growth of E. coli covered by the composite film with 3.75% and 5% MAAs exhibited the best survival rate. These results reveal that MAAs are a good film-forming substrate, and MAAs have good potential to prepare anti-ultraviolet active films and antioxidant active films for applications. Overall, this project provides a theoretical basis for the study of active composite films with anti-ultraviolet activities, and it provides new ideas for the application of MAAs

    Development and validation of a UPLC–MS/MS assay for the determination of gemcitabine and its L-carnitine ester derivative in rat plasma and its application in oral pharmacokinetics

    No full text
    A simple and rapid UPLC–MS/MS method to simultaneously determine gemcitabine and its L-carnitine ester derivative (2'-deoxy-2', 2'-difluoro-N-((4-amino-4-oxobutanoyl) oxy)-4-(trimethyl amm-onio) butanoate-cytidine, JDR) in rat plasma was developed and validated. The conventional plasma sample preparation method of nucleoside analogues is solid-phase extraction (SPE) which is time-consuming and cost-expensive. In this study, gradient elution with small particles size solid phase was applied to effectively separate gemcitabine and JDR, and protein precipitation pretreatment was adopted to remove plasma protein and extract the analytes with high recovery(>81%). Method validation was performed as per the FDA guidelines, and the standard curves were found to be linear in the range of 5–4000 ng/ml for JDR and 4–4000 ng/ml for gemcitabine, respectively. The lower limit of quantitation (LLOQ) of gemcitabine and JDR was 4 and 5 ng/ml, respectively. The intra-day and inter-day precision and accuracy results were within the acceptable limits. Finally, the developed method was successfully applied to investigate the pharmacokinetic studies of JDR and gemcitabine after oral administration to rats
    corecore