138 research outputs found

    Mid-infrared variability of changing-look AGN

    Get PDF
    It is known that some active galactic nuclei (AGNs) transited from type 1 to type 2 or vice versa. There are two explanations for the so-called changing look AGNs: one is the dramatic change of the obscuration along the line-of-sight, the other is the variation of accretion rate. In this paper, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing look AGNs using WISE and newly released NEOWISE-R data. The mid-infrared light curves of 10 objects echoes the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather supports the scheme of dramatic change in the accretion rate.Comment: Published by ApjL, 7 pages, 3 figures, 2 table

    Maximum relative excitation of a specific vibrational mode via optimum laser pulse duration

    Get PDF
    For molecules and materials responding to femtosecond-scale optical laser pulses, we predict maximum relative excitation of a Raman-active vibrational mode with period T when the pulse has an FWHM duration of 0.42 T. This result follows from a general analytical model, and is precisely confirmed by detailed density-functional-based dynamical simulations for C60 and a carbon nanotube, which include anharmonicity, nonlinearity, no assumptions about the polarizability tensor, and no averaging over rapid oscillations within the pulse. The mode specificity is, of course, best at low temperature and for pulses that are electronically off-resonance, and the energy deposited in any mode is proportional to the fourth power of the electric field.Comment: 5 pages, 4 figure

    Discovery of a Mid-infrared Echo from the TDE candidate in the nucleus of ULIRG F01004-2237

    Get PDF
    We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event (TDE) candidate in the center of a nearby ultraluminous infrared galaxy (ULIRG) F01004-2237 using archival {\it WISE} and {\it NEOWISE} data from 2010 to 2016. At the peak of the optical flare, F01004-2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.43.4 and 4.6μ4.6\mum up to the end of 2016. The host-subtracted MIR peak luminosity is 2−3×10442-3\times10^{44}\,erg\,s−1^{-1}. We interpret the MIR LCs as an infrared echo, i.e. dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590−850590-850\,K, and the warm dust mass is ∼7 M⊙\sim7\,M_{\odot}. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 4−11×10444-11\times10^{44}\,erg\,s−1^{-1}. The inferred total IR energy is 1−2×10521-2\times10^{52}\,erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering

    Mid-infrared flare of TDE candidate PS16dtm: dust echo and implications for the spectral evolution

    Get PDF
    PS16dtm was classified as a candidate tidal disruption event (TDE) in a dwarf Seyfert 1 galaxy with low-mass black hole (∼106M⊙\sim10^6M\odot) and has presented various intriguing photometric and spectra characteristics. Using the archival WISE and the newly released NEOWISE data, we found PS16dtm is experiencing a mid-infrared (MIR) flare which started ∼11\sim11 days before the first optical detection. Interpreting the MIR flare as a dust echo requires close pre-existing dust with a high covering factor, and suggests the optical flare may have brightened slowly for some time before it became bright detectable from the ground. More evidence is given at the later epochs. At the peak of the optical light curve, the new inner radius of the dust torus has grown to much larger size, a factor of 7 of the initial radius due to strong radiation field. At ∼150\sim150 days after the first optical detection, the dust temperature has dropped well below the sublimation temperature. Other peculiar spectral features shown by PS16dtm are the transient, prominent FeII emission lines and outflows indicated by broad absorption lines detected during the optical flare. Our model explains the enhanced FeII emission from iron newly released from the evaporated dust. The observed broad absorption line outflow could be explained by accelerated gas in the dust torus due to the radiation pressure.Comment: Accepted by ApJ, 5 figure

    Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image

    Get PDF
    Powdery mildew, caused by the fungus Blumeria graminis, is a major winter wheat disease in China. Accurate delineation of powdery mildew infestations is necessary for site-specific disease management. In this study, high-resolution multispectral imagery of a 25 km2 typical outbreak site in Shaanxi, China, taken by a newly-launched satellite, SPOT-6, was analyzed for mapping powdery mildew disease. Two regions with high representation were selected for conducting a field survey of powdery mildew. Three supervised classification methods—artificial neural network, mahalanobis distance, and maximum likelihood classifier—were implemented and compared for their performance on disease detection. The accuracy assessment showed that the ANN has the highest overall accuracy of 89%, following by MD and MLC with overall accuracies of 84% and 79%, respectively. These results indicated that the high-resolution multispectral imagery with proper classification techniques incorporated with the field investigation can be a useful tool for mapping powdery mildew in winter wheat

    Long-Term Decline of the Mid-Infrared Emission of Normal Galaxies: Dust Echo of Tidal Disruption Flare?

    Get PDF
    We report the discovery of a sample of 19 low redshift (z<0.22) spectroscopically non-Seyfert galaxies that show slow declining mid-infrared (MIR) light-curves (LCs), similar to those of tidal disruption event (TDE) candidates with extreme coronal lines. Two sources also showed a relatively fast rising MIR LCs. They consist of 61% sample of the WISE MIR variable non-Seyfert galaxies with SDSS spectra. In a comparison sample of optically selected Seyfert galaxies, the fraction of sources with such a LC is only 15%. After rejecting 5 plausible obscured Seyfert galaxies with red MIR colours, remaining 14 objects are studied in detail in this paper. We fit the declining part of LC with an exponential law, and the decay time is typically one year. The observed peak MIR luminosities (νLν\nu L_\nu) after subtracting host galaxies are in the range of a few 10^42 to 10^44 erg~s^-1 with a median of 5x10^43 erg~s^-1 in the W2 band. The black hole masses distribute in a wide range with more than half in between 10^7 to 10^8 ~M_sun, but significantly different from that of optical/UV selected TDEs. Furthermore, MIR luminosities are correlated with black hole masses, the stellar mass or luminosity of their host bulges. Most galaxies in the sample are red and luminous with an absolute magnitude of r between -20 to -23. We estimate the rate of event about 10^-4 gal^-1~yr^-1 among luminous red galaxies. We discuss several possibilities for the variable infrared sources, and conclude that most likely, they are caused by short sporadic fueling to the supermassive black holes via either the instability of accretion flows or tidal disruption of stars.Comment: 32 pages, 12 figures. Accepted to MNRA

    Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects

    Get PDF
    Yellow rust (Puccinia striiformis f. sp. Tritici), powdery mildew (Blumeria graminis) and wheat aphid (Sitobion avenae F.) infestation are three serious conditions that have a severe impact on yield and grain quality of winter wheat worldwide. Discrimination among these three stressors is of practical importance, given that specific procedures (i.e. adoption of fungicide and insecticide) are needed to treat different diseases and insects. This study examines the potential of hyperspectral sensor systems in discriminating these three stressors at leaf level. Reflectance spectra of leaves infected with yellow rust, powdery mildew and aphids were measured at the early grain filling stage. Normalization was performed prior to spectral analysis on all three groups of samples for removing differences in the spectral baseline among different cultivars. To obtain appropriate bands and spectral features (SFs) for stressor discrimination and damage intensity estimation, a correlation analysis and an independent t-test were used jointly. Based on the most efficient bands/SFs, models for discriminating stressors and estimating stressor intensity were established by Fisher’s linear discriminant analysis (FLDA) and partial least square regression (PLSR), respectively. The results showed that the performance of the discrimination model was satisfactory in general, with an overall accuracy of 0.75. However, the discrimination model produced varied classification accuracies among different types of diseases and insects. The regression model produced reasonable estimates of stress intensity, with an R2 of 0.73 and a RMSE of 0.148. This study illustrates the potential use of hyperspectral information in discriminating yellow rust, powdery mildew and wheat aphid infestation in winter wheat. In practice, it is important to extend the discriminative analysis from leaf level to canopy level

    Rapid "Turn-on" of type 1 AGN in a quiescent early type galaxy SDSS1115+0544

    Get PDF
    We present a detailed study of a transient in the center of SDSS1115+0544 based on the extensive UV, optical, mid-IR light curves (LC) and spectra over 1200 days. The host galaxy is a quiescent early type galaxy at zz = 0.0899 with a blackhole mass of 2×107M⊙2\times10^7M_\odot. The transient underwent a 2.5 magnitude brightening over ∼120\sim120 days, reaching a peak VV-band luminosity (extinction corrected) of −20.9-20.9 magnitude, then fading 0.5 magnitude over 200 days, settling into a plateau of >600>600 days. Following the optical brightening are the significant mid-IR flares at 3.43.4 and 4.5μ4.5\mum, with a peak time delay of ∼180\sim180 days. The mid-IR LCs are explained as the echo of UV photons by a dust medium with a radius of 5×10175\times10^{17} cm, consistent with E(B−V)\rm E(B-V) of 0.58 inferred from the spectra. This event is very energetic with an extinction corrected Lbol∼4×1044L_{bol} \sim 4\times10^{44} erg s−1^{-1}. Optical spectra over 400 days in the plateau phase revealed newly formed broad Hα,β\alpha, \beta emission with a FWHM of ∼3750\sim3750 km s−1^{-1} and narrow coronal lines such as [Fe VII], [Ne V]. This flare also has a steeply rising UV continuum, detected by multi-epoch SwiftSwift data at +700+700 to +900+900 days post optical peak. The broad Balmer lines and the UV continuum do not show significant temporal variations. The slow evolving LCs over 1200 days, the constant Balmer lines and UV continuum at late-times rule out TDE and SN IIn as the physical model for this event. We propose that this event is a `turn-on' AGN, transitioning from a quiescent state to a type 1 AGN with a sub-Eddington accretion rate of 0.017M⊙0.017M_\odot/yr. This change occurred on a very short time scale of ∼120−200\sim 120- 200 days. The discovery of such a rapid `turn-on' AGN poses challenges to accretion disk theories and may indicate such event is not extremely rare.Comment: Comments are welcome. Emails to the first author. Accepted for publication in Ap
    • …
    corecore