10 research outputs found

    How to collect high quality segmentations: use human or computer drawn object boundaries?

    Full text link
    High quality segmentations must be captured consistently for applications such as biomedical image analysis. While human drawn segmentations are often collected because they provide a consistent level of quality, computer drawn segmentations can be collected efficiently and inexpensively. In this paper, we examine how to leverage available human and computer resources to consistently create high quality segmentations. We propose a quality control methodology. We demonstrate how to apply this approach using crowdsourced and domain expert votes for the "best" segmentation from a collection of human and computer drawn segmentations for 70 objects from a public dataset and 274 objects from biomedical images. We publicly share the library of biomedical images which includes 1,879 manual annotations of the boundaries of 274 objects. We found for the 344 objects that no single segmentation source was preferred and that human annotations are not always preferred over computer annotations. These results motivated us to examine the traditional approach to evaluate segmentation algorithms, which involves comparing the segmentations produced by the algorithms to manual annotations on benchmark datasets. We found that algorithm benchmarking results change when the comparison is made to consensus-voted segmentations. Our results led us to suggest a new segmentation approach that uses machine learning to predict the optimal segmentation source and a modified segmentation evaluation approach.National Science Foundation (IIS-0910908

    Complementary Skyrmion Racetrack Memory with Voltage Manipulation

    Get PDF
    Magnetic skyrmion holds promise as information carriers in the next-generation memory and logic devices, owing to the topological stability, small size and extremely low current needed to drive it. One of the most potential applications of skyrmion is to design racetrack memory (RM), named Sk-RM, instead of utilizing domain wall (DW). However, current studies face some key design challenges, e.g., skyrmion manipulation, data representation and synchronization etc. To address these challenges, we propose here a complementary Sk-RM structure with voltage manipulation. Functionality and performance of the proposed design are investigated with micromagnetic simulations.Comment: 3 pages, 4 figure

    Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory

    Get PDF
    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.Comment: 10 pages, 8 figure

    Complementary Spintronic Logic With Spin Hall Effect-Driven Magnetic Tunnel Junction

    No full text

    Compact Modeling and Evaluation of Magnetic Skyrmion-Based Racetrack Memory

    No full text

    Rational Design of a Hydrophilic Core–Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification

    No full text
    Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core–shell yarns via mature weaving techniques. The core–shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m–2 h–1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m–2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m–2 day–1

    Rational Design of a Hydrophilic Core–Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification

    No full text
    Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core–shell yarns via mature weaving techniques. The core–shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m–2 h–1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m–2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m–2 day–1

    Rational Design of a Hydrophilic Core–Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification

    No full text
    Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core–shell yarns via mature weaving techniques. The core–shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m–2 h–1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m–2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m–2 day–1

    Rational Design of a Hydrophilic Core–Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification

    No full text
    Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core–shell yarns via mature weaving techniques. The core–shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m–2 h–1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m–2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m–2 day–1
    corecore