8 research outputs found

    Mathematical Modelling and Dynamic Analysis of a Direct-Acting Relief Valve Based on Fluid-Structure Coupling Analysis

    No full text
    To explain the sudden jump of pressure as the variation of water depth for a direct-acting relief valve used by torpedo pump as the variation of water depth, a 2-DOF fluid-structure coupling dynamic model is developed. A nonlinear differential pressure model at valve port is applied to model the axial vibration of fluid, and a nonlinear wake oscillator model is used to excite the valve element in the vertical direction; meanwhile, the contact nonlinearity between the valve element and valve seat is also taken into consideration. Based on the developed dynamical model, the water depths for the sudden jumps of pressure can be located precisely when compared with the experimental signals, and the corresponding vibration conditions of the valve element in both the axial and vertical directions are explored. Subsequently, in order to eliminate the sudden jumps of pressure, different pump inlet pressure was tested experimentally; when it was decreased to 0.4 MPa, the pressure jumps ever appeared during the dropping and lifting processes were removed, and the numerical simulation based on the developed mathematical model also verified the experimental measurements

    Correlation between the Quantifiable Parameters of Whole Solitary Pulmonary Nodules Perfusion Imaging Derived with Dynamic CT and Nodules Size

    No full text
    Background and objective The solitary pulmonary nodules (SPNs) is one of the most common findings on chest radiographs. The blood flow patterns of the biggest single SPNs level has been studied. This assessment may be only a limited sample of the entire region of interest (ROI) and is unrepresentative of the SPNs as a volume. Ideally, SPNs volume perfusion should be measured. The aim of this study is to evaluate the correlation between the quantifiableparameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size. Methods Sixty-five patients with SPNs (diameter≤3 cm; 42 malignant; 12 active inflammatory; 11 benign) underwent multi-location dynamic contrast material-enhanced serial CT scanning mode with stable table were performed; The mean values of valid sections were calculated, as the quantifiable parameters of volume SPNs perfusion imaging derived with16-slice spiral CT and 64-slice spiral CT. The correlation between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size were assessed by means of linear regression analysis. Results No significant correlations were found between the nodules size and each of the peak height (PHSPN) (32.15 Hu±14.55 Hu),ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio(13.20±6.18)%, perfusion(PSPN) (29.79±19.12) mLmin-1100 g-1 and mean transit time (12.95±6.53) s (r =0.081, P =0.419; r =0.089, P =0.487; r =0.167, P =0.077; r =0.023, P =0.880). Conclusion No significant correlations were found between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size

    Correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size

    No full text
    Background and Objective The solitary pulmonary nodules (SPNs ) is one of the most common findings on chest radiographs. It becomes possible to provide more accurately quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs ) with multi-slice spiral computed tomography (MSCT). The aim of this study is to evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size. Methods 68 patients with maliagnant solitary pulmonary nodules (SPNs ) (diameter <=4 cm)underwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4mL/s by an autoinjector, 4*5mm or 4*2.5mm scanning mode with stable table were performed.) serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion (PSPN), peak height (PHSPN)ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio)and mean transit time(MTT) were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results No significant correlations were found between the tumor size and each of the peak height (PHSPN) ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio) perfusion(PSPN)and mean transit time (r=0.18, P=0.14; r=0.20,P=0.09; r=0.01, P=0.95; r=0.01, P=0.93). Conclusion No significant correlation is found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules

    Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells

    No full text
    The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity <i>via</i> inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-β1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA–hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy

    Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells

    No full text
    The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity <i>via</i> inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-β1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA–hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy
    corecore