91 research outputs found

    The Design and Implementation of Mobile Monitoring System of Transmitting Station Based on Android Platform

    Get PDF
    AbstractIn view of the high speed development of current mobile platform related technology and wireless telecommunication technology, this paper designs and realized a radio and television launching pad mobile monitoring system based on Android platform. The system as expansion of the present scene monitoring system to receive real-time data on transmitters and control their states by wireless network at any time and place, thus further improve the operation efficiency of transmitting station

    Flow field calculation and dynamic characteristic analysis of spherical hybrid gas bearings based on passive grid

    Get PDF
    In order to research the spherical spiral groove hybrid gas bearings, the Realizable k − ε turbulence model of gas film was established based on FLUENT. The simulation calculation method of 6-degrees of freedom passive grid was used, which can simulate the lubrication characteristics of the gas film transient flow field accurately. And the gas film pressure distribution and dynamic characteristic coefficients are numerically calculated. The dynamic and static pressure coupling effects of the gas flow field were analyzed, and the axis motion trajectory was simulated. The effect of rotation speed, gas supply pressure and tangential angle on the dynamic characteristic coefficients during bearing operation was analyzed. And the stability of the gas bearing was studied. The conclusion from the analysis shows that different rotation speed and gas supply pressure will change the pressure distribution of the gas bearing during the operation. The dynamic characteristics of the gas film can be changed by reasonably optimizing the operation parameters, which can change the whirl characteristics of the gas film and improve the stability. Through calculation and analysis, the tangential angle is selected between 55° and 60°, to ensure that the gas film has a high stiffness, while it also can obtain the larger damping. The simulation results and the experimental results are compared and analyzed to verify the correctness and effectiveness of the simulation method. At the same time, the research of this paper provided a theoretical basis for optimizing the bearing structure and operating parameters, improving the dynamic characteristics of gas bearings and improving the operation stability

    PF-DMD: Physics-fusion dynamic mode decomposition for accurate and robust forecasting of dynamical systems with imperfect data and physics

    Full text link
    The DMD (Dynamic Mode Decomposition) method has attracted widespread attention as a representative modal-decomposition method and can build a predictive model. However, the DMD may give predicted results that deviate from physical reality in some scenarios, such as dealing with translation problems or noisy data. Therefore, this paper proposes a physics-fusion dynamic mode decomposition (PFDMD) method to address this issue. The proposed PFDMD method first obtains a data-driven model using DMD, then calculates the residual of the physical equations, and finally corrects the predicted results using Kalman filtering and gain coefficients. In this way, the PFDMD method can integrate the physics-informed equations with the data-driven model generated by DMD. Numerical experiments are conducted using the PFDMD, including the Allen-Cahn, advection-diffusion, and Burgers' equations. The results demonstrate that the proposed PFDMD method can significantly reduce the reconstruction and prediction errors by incorporating physics-informed equations, making it usable for translation and shock problems where the standard DMD method has failed

    Study on dynamic characteristics of gas films of spherical spiral groove hybrid gas bearings

    Get PDF
    According to the gas film force variation law, when the bearing axis is slightly displaced from the static equilibrium position, displacement and velocity disturbance relation expressions for the gas film force increment are constructed. Moreover, combined with the bearing rotor system motion equation, calculation model equations for the gas film stiffness and damping coefficients are established. The axial and radial vibration and velocity of the gas bearings during operation are collected. The instantaneous stiffness and damping coefficients of the gas film are calculated by the rolling iteration algorithm using MATLAB. The dynamic changes in the gas film stiffness and damping under different motion states are analyzed, and the mechanism of the gas film vortex and oscillation is studied. The results demonstrate the following: (1) When the gas bearing is running in the linear steady state in cycle 1, the dynamic pressure effect is enhanced and the stability is improved by increasing the eccentricity; when the gas supply pressure is increased, the static pressure effect is enhanced and the gas film vortex is reduced, but the oscillation is strengthened. (2) With the increase in rotational speed, the gas film vortex force gradually exceeds the gas film damping force, and the stability gradually worsens, causing a fluctuation in the gas film stiffness and damping, following which singularity occurs and a half-speed vortex is formed. Meanwhile, the gas film oscillation is intensified, and the rotor enters the nonlinear stable cycle 2 state operation. (3) As the fluctuation of the film force increases, the instantaneous stiffness and damping oscillation of the film intensifies, most of the stiffness and damping coefficients exhibit distortion, and the rotor operation will enter a chaotic or unstable state. Therefore, the gas bearing stiffness and damping variation characteristics can be used to study and predict the gas bearing operating state. Finally, measures for reducing the vortex and oscillation of the gas film and improving the stability of the gas bearing operation are proposed

    Dynamic Stability Prediction of Spherical Spiral Groove Hybrid Gas Bearings Rotor System

    Get PDF
    Taking the hemisphere spiral groove hybrid gas bearings (HSGHGB) as the research object, the nonlinear dynamic lubrication analysis mathematical model of spherical hybrid gas bearings is established with the axis instantaneous position and instantaneous displacement speed as the parameters. The perturbation pressure control equation is solved by means of the finite difference method in generalized coordinate system. The calculation program is prepared based on VCþþ6.0, and the transient perturbation pressure distribution of three-dimensional (3D) gas film, nonlinear gas film force, and dynamic stiffness and damping coefficients are numerically calculated. The influences of different speeds, eccentricity ratios, and gas supply pressures on the dynamic characteristic coefficients of gas film are studied. The results show that the influence of bearing's supply pressure, speed, and eccentricity on the dynamic characteristics of gas film is significant. The dynamic equations of rotor-bearing system containing the gas film dynamic stiffness and the damping coefficients are established, and the stability of the gas film is predicted based on the Routh-Hurwitz stability criterion. The research provides the theoretical foundation for actively controlling the bearing running stiffness and damping and stemming the instability of gas film

    Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data

    No full text
    Electric Vehicles (EVs), by reducing the dependency on fossil fuel and minimizing the traffic-related pollutants emission, are considered as an effective component of a sustainable transportation system. However, the massive penetration of EVs brings a big challenge to the establishment of charging infrastructures. This paper presents the approach to locate charging stations utilizing the reconstructed EVs trajectory derived from the Cellular Signaling Data (CSD). Most previous work focused on the commute trips estimated from the number of jobs and households between traffic analysis zones (TAZs). This paper investigated the large-scale CSD and illustrated the method to generate the 24-hour travel demand for each EV. The complete trip in a day for EV was reconstructed through merging the time sequenced trajectory derived from simulation. This paper proposed a two-step model that grouped the charging demand location into clusters and then identified the charging station site through optimization. The proposed approach was applied to investigate the charging behavior of medium-range EVs with Cellular Signaling Data collected from the China Unicom in Tianjin. The results indicate that over 50% of the charging stations are located within the central urban area. The developed approach could contribute to the planning of future charging stations

    Ownership and Usage Analysis of Alternative Fuel Vehicles in the United States with the 2017 National Household Travel Survey Data

    No full text
    By using the 2017 National Household Travel Survey (NHTS) data, this study explores the status quo of ownership and usage of conventional vehicles (CVs) and alternative fuel vehicles (AFVs), i.e., Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs), in the United States. The young ages of HEVs (6.0 years), PHEVs (3.2 years) and BEVs (3.1 years) demonstrate the significance of the 2017 NHTS data. The results show that after two decades of development, AFVs only occupy about 5% of annual vehicle sales, and their share does not show big increases in recent years. Meanwhile, although HEVs still dominate the AFV market, the share of PHEVs & BEVs has risen to nearly 50% in 2017. In terms of ownership, income still seems to be a major factor influencing AFV adoption, with the median annual household incomes of CVs, HEVs, PHEVs and BEVs being 75,000,75,000, 100,000, 150,000and150,000 and 200,000, respectively. Besides, AFV households are more likely to live in urban areas, especially large metropolitan areas. Additionally, for AFVs, the proportions of old drivers are much smaller than CVs, indicating this age group might still have concerns regarding adopting AFVs. In terms of travel patterns, the mean and 85th percentile daily trip distances of PHEVs and HEVs are significantly larger than CVs, followed by BEVs. BEVs might still be able to replace CVs for meeting most travel demands after a single charge, considering most observed daily trip distances are fewer than 93.5 km for CVs. However, the observed max daily trip distances of AFVs are still much smaller than CVs, implying increasing the endurance to meet extremely long-distance travel demands is pivotal for encouraging consumers to adopt AFVs instead of CVs in the future

    A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications

    No full text
    This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications

    Research on dynamic characteristics of gas film of spherical hybrid gas bearings based on computational fluid dynamics

    No full text
    A realizable k–ε turbulence model for spherical spiral groove hybrid gas bearing films was established based on computational fluid dynamics (CFD). A six degrees of freedom passive grid was used to calculate the gas film pressure distribution, bearing capacity, and dynamic characteristic coefficients numerically. The gas flow field dynamic and static pressure coupling mechanism was studied. The effects of the rotation speed, gas film thickness eccentricity ratio, and gas supply pressure on the dynamic and static pressure bearing capacity, and dynamic characteristic coefficients during operation were analyzed as a method of research into the mechanical mechanisms of gas bearing stability. The CFD calculation analysis can simulate the complex gas flow in the transient flow field of the gas film and determine reasonable operation parameters to optimize the dynamic and static pressure coupling effects, which can improve the gas film bearing capacity, dynamic characteristics, and operational stability of gas bearings
    • …
    corecore