3 research outputs found

    DataSheet_1_Systemic immune-inflammatory biomarkers (SII, NLR, PLR and LMR) linked to non-alcoholic fatty liver disease risk.docx

    No full text
    BackgroundSystemic immune-inflammatory biomarkers including systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have been demonstrated to be associated with the risk and severity of various liver diseases. However, studies on their role and clinical significance in metabolic diseases, especially in nonalcoholic fatty liver disease (NAFLD), are limited and results are inconsistent.Methods10821 adults aged 20 years or older were enrolled in this cross-sectional study, sourced from six cycles of the National Health and Nutrition Examination Survey (NHANES). Survey-weighted logistic regression was employed to investigate the correlation between systemic immune-inflammatory biomarkers (SII, NLR, PLR, and LMR) and NAFLD risk. Restricted cubic spline regression models and segmented regression models were used to describe nonlinear relationships and threshold effects. Subgroup and sensitivity analyses were also conducted.ResultsAfter adjusting for all confounding variables, there was a significant positive association observed between ln-transformed SII (OR= 1.46, 95% CI: 1.27-1.69, P Conclusionln-transformed SII, NLR, and LMR were linearly associated with NAFLD risk. ln(PLR) showed an inverted “U”-shaped nonlinear dose-response relationship with the risk of NAFLD.</p

    Brominated Quaternary Ammonium Salt-Assisted Hybrid Electron Transport Layer for High-Performance Conventional Organic Solar Cells

    No full text
    Interlayer engineering is crucial for achieving efficient and stable organic solar cells (OSCs). Herein, by introducing a commercialized brominated quaternary ammonium salt, hexamethonium bromide (HB), into a perylene diimide (PDI)-structured electron transport layer (ETL), a PDINN:HB hybrid ETL with enhanced charge collection ability and environmental/operational stability is realized. Molecular dynamics simulations and Kelvin probe force microscopy indicate that strong polar bromine and amine groups can form extra interfacial dipoles in the hybrid interlayer, while X-ray photoelectron spectroscopy and electron paramagnetic resonance suggest the hybrid ETL can interact with the Ag cathode, thereby regulating the energy level arrangement at the interface. As for the results, the PDINN:HB hybrid ETL enables improved power conversion efficiency (PCE) from 17.8 to 18.4% and 18.8 to 19.4% in PM6:C5-16 bulk heterojunction- and PM6/L8-BO pseudobulk heterojunction-based OSCs, respectively. The versatility of this method is further verified by introducing a range of brominated quaternary ammonium salts into PDINN, in which a superior PCE and stability are all obtained compared to the reference device

    π‑Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells To Achieve over 20% Efficiency

    No full text
    Organic photovoltaics (OPVs) suffer from a trade-off between efficient charge transport and suppressed nonradiative recombination due to the aggregation-induced luminance quenching of organic semiconductors. To resolve this grand challenge, a π-extended nonfullerene acceptor (NFA) B6Cl with large voids among the honeycomb network is designed and introduced into photovoltaic systems. We find that the presence of a small amount of (i.e., 0.5 or 1 wt %) B6Cl can compress the molecular packing of the host acceptor L8-BO, leading to shortened π–π stacking distance from 3.59 to 3.50 Å (that will improve charge transport) together with ordered alkyl chain packing (that will inhibit nonradiative energy loss due to the suppressed C–C and C–H bonds vibrations), as validated by high-energy X-ray scattering measurements. This morphology transformation ultimately results in simultaneously improved JSC, FF, and VOC of OPVs. As a result, the maximum PCEs of PM6:L8-BO and D18:L8-BO are increased from 19.1 and 19.3% to 19.8 and 20.2%, respectively, which are among the highest values for single-junction OPVs. The university of B6Cl to increase the performance of OPVs is further evidenced in a range of polymer:NFA OPVs
    corecore