69 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    A Spatiotemporal Solution to Control COVID-19 Transmission at the Community Scale for Returning to Normalcy: COVID-19 Symptom Onset Risk Spatiotemporal Analysis

    No full text
    BackgroundFollowing the recent COVID-19 pandemic, returning to normalcy has become the primary goal of global cities. The key for returning to normalcy is to avoid affecting social and economic activities while supporting precise epidemic control. Estimation models for the spatiotemporal spread of the epidemic at the refined scale of cities that support precise epidemic control are limited. For most of 2021, Hong Kong has remained at the top of the “global normalcy index” because of its effective responses. The urban-community-scale spatiotemporal onset risk prediction model of COVID-19 symptom has been used to assist in the precise epidemic control of Hong Kong. ObjectiveBased on the spatiotemporal prediction models of COVID-19 symptom onset risk, the aim of this study was to develop a spatiotemporal solution to assist in precise prevention and control for returning to normalcy. MethodsOver the years 2020 and 2021, a spatiotemporal solution was proposed and applied to support the epidemic control in Hong Kong. An enhanced urban-community-scale geographic model was proposed to predict the risk of COVID-19 symptom onset by quantifying the impact of the transmission of SARS-CoV-2 variants, vaccination, and the imported case risk. The generated prediction results could be then applied to establish the onset risk predictions over the following days, the identification of high–onset-risk communities, the effectiveness analysis of response measures implemented, and the effectiveness simulation of upcoming response measures. The applications could be integrated into a web-based platform to assist the antiepidemic work. ResultsDaily predicted onset risk in 291 tertiary planning units (TPUs) of Hong Kong from January 18, 2020, to April 22, 2021, was obtained from the enhanced prediction model. The prediction accuracy in the following 7 days was over 80%. The prediction results were used to effectively assist the epidemic control of Hong Kong in the following application examples: identified communities within high–onset-risk always only accounted for 2%-25% in multiple epidemiological scenarios; effective COVID-19 response measures, such as prohibiting public gatherings of more than 4 people were found to reduce the onset risk by 16%-46%; through the effect simulation of the new compulsory testing measure, the onset risk was found to be reduced by more than 80% in 42 (14.43%) TPUs and by more than 60% in 96 (32.99%) TPUs. ConclusionsIn summary, this solution can support sustainable and targeted pandemic responses for returning to normalcy. Faced with the situation that may coexist with SARS-CoV-2, this study can not only assist global cities in responding to the future epidemics effectively but also help to restore social and economic activities and people’s normal lives

    Modeling of non-Gaussian colored noise and application in CR multi-sensor networks

    No full text
    Abstract Motivated by the practical and accurate demand of intelligent cognitive radio (CR) sensor networks, a new modeling method of practical background noise and a novel sensing scheme are presented, where the noise model is the non-Gaussian colored noise based on α stable process and the sensing method is improved fractional low-order moment (FLOM) detection algorithm with balance parameter. First, we establish the non-Gaussian colored noise model through combining α-distribution with a linear system represented by a matrix. And a fitting curve of practical noise data is given to verify the validity of the proposed model. Then we present a parameter estimation method with low complexity to obtain the balance parameter, which is an important part of the detection algorithm. The balance parameter-based FLOM (BP-FLOM) detector does not require any a priori knowledge about the primary user signal and channels. Monte Carlo simulations clearly demonstrate the performance of the proposed method versus the generalized signal-to-noise ratio, the characteristic exponent α, and the number of detectors in sensing networks

    A Data-Driven Framework for Analyzing Spatial Distribution of the Elderly Cardholders by Using Smart Card Data

    No full text
    In this era of population aging, it is essential to understand the spatial distribution patterns of the elderly. Based on the smart card data of the elderly, this study aims to detect the home location and examine the spatial distribution patterns of the elderly cardholders in Beijing. A framework is proposed that includes three methods. First, a rule-based approach is proposed to identify the home location of the elderly cardholders based on individual travel pattern. The result has strong correlation with the real elderly population. Second, the clustering method is adopted to group bus stops based on the elderly travel flow. The center points of clusters are utilized to construct a Voronoi diagram. Third, a quasi-gravity model is proposed to reveal the elderly mobility between regions, using the public facilities index. The model measures the elderly travel number between regions, according to public facilities index on the basis of the total number of point of interest (POI) data. Beijing is used as an example to demonstrate the applicability of the proposed methods, and the methods can be widely used for urban planning, design and management regarding the aging population

    Table_1_Understanding spatiotemporal symptom onset risk of Omicron BA.1, BA.2 and hamster-related Delta AY.127.DOCX

    No full text
    PurposeInvestigation of the community-level symptomatic onset risk regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, is crucial to the pandemic control in the new normal.MethodsInvestigated in this study is the spatiotemporal symptom onset risk with Omicron BA.1, BA.2, and hamster-related Delta AY.127 by a joint analysis of community-based human mobility, virus genomes, and vaccinations in Hong Kong.ResultsThe spatial spread of Omicron BA.2 was found to be 2.91 times and 2.56 times faster than that of Omicron BA.1 and Delta AY.127. Identified has been an early spatial invasion process in which spatiotemporal symptom onset risk was associated with intercommunity and cross-community human mobility of a dominant source location, especially regarding enhancement of the effects of the increased intrinsic transmissibility of Omicron BA.2. Further explored is the spread of Omicron BA.1, BA.2, and Delta AY.127 under different full and booster vaccination rate levels. An increase in full vaccination rates has primarily contributed to the reduction in areas within lower onset risk. An increase in the booster vaccination rate can promote a reduction in those areas within higher onset risk.ConclusionsThis study has provided a comprehensive investigation concerning the spatiotemporal symptom onset risk of Omicron BA.1, BA.2, and hamster-related Delta AY.127, and as such can contribute some help to countries and regions regarding the prevention of the emergence of such as these variants, on a strategic basis. Moreover, this study provides scientifically derived findings on the impact of full and booster vaccination campaigns working in the area of the reduction of symptomatic infections.</p

    Mechanistic in silico modeling of bisphenols to predict estrogen and glucocorticoid disrupting potentials

    No full text
    Endocrine disrupting chemicals (EDCs) can act as agonists, antagonists or mixed agonists/antagonists toward estrogen receptor α (ERα) and glucocorticoid receptor (GR) in a tissue- and cell-specific manner. However, the activation/inhibition mechanism by which structurally different chemicals induce various types of disruption remain ambiguous. This unrevealed theory limited the in silico modeling of EDCs and the prioritization of potential EDCs for experimental testing. As a kind of chemical widely used in manufacture, bisphenols (BPs) have attracted great attentions on their potential endocrine disrupting effects. BPs used in this study exhibited pure agonistic, pure antagonistic or mixed agonistic/antagonistic activities toward ERα and/or GR. According to the mechanistic modeling, the pure agonistic and pure antagonistic activities were attributed to a single type of protein conformation induced by BPs-ERα and/or BPs-GR interactions, whereas the mixed agonistic/antagonistic activities were attributed to multiple conformations that concomitantly exist. After interacting with BPs, the active conformation recruits coactivator to induce agonistic activity and the blocked conformation inhibits coactivator to induce antagonistic activity, whereas the concomitantly-existing multiple conformations (active, blocked and competing conformations) recruit coactivator, recruit corepressor and/or inhibit coactivator to dually induce the agonistic and antagonistic activities. Therefore, the in silico modeling in this study can not only predict ERα and GR disrupting activities but also, especially, identify the potential mechanisms. This mechanistic study breaks the current bottleneck of computational toxicology and can be widely used to prioritize potential estrogen/glucocorticoid disruptor for experimental testing in both pre-clinic and clinic studies.</p
    • …
    corecore