194 research outputs found

    Coagulation Behavior of Aluminum Salts in Eutrophic Water:  Significance of Al13Species and pH Control

    Get PDF
    The coagulation behavior of aluminum salts in a eutrophic source water was investigated from the viewpoint of Al(III) hydrolysis species transformation. Particular emphasis was paid to the coagulation effect of Al-13 species on removing particles and organic matter. The coagulation behavior of Al coagulants with different basicities was examined through jar tests and hydrolyzed Al(III) speciation distribution characterization in the coagulation process. The results showed that the coagulation efficiency of Al coagulants positively correlated with the content of Al-13 in the coagulation process rather than in the initial coagulants. Aluminum chloride (AlCl3) was more effective than polyaluminum chloride (PACT) in removing turbidity and dissolved organic matter in eutrophic water because AlCl3 could not only generate Al-13 species but also function as a pH control agent in the coagulation process. The solid-state Al-27 NMR spectra revealed that the precipitates formed from AlCl3 and PACT were significantly different and proved that the preformed Al-13 polymer was more stable than the in situ formed one during the coagulation process. Through regulating Al speciation, pH control could improve the coagulation process especially in DOC removal, and AlCl3 benefited most from pH control

    Approximate Sparse Regularized Hyperspectral Unmixing

    Get PDF
    Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU), is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than l1 regularizer and much easier to be solved than l0 regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to l1 regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art l1 regularizer

    A heat pipe cooled modular reactor concept for manned lunar base application

    Get PDF
    ABSTRACT A lithium heat pipe cooled modular fast reactor (HPCMR) power system concept has been developed for manned lunar base application. The system is designed to use the static thermoelectric conversion module to produce over 100kW electricity for up to ten years. Waste heat is rejected by potassium heat pipe radiator. This system has advantages of low mass, long lifetime, no pumped liquid coolant, and no single point of failure. Main parameters of the system are also given in this paper. INTRODUCTION Early prior research demonstrated the superiority of ceramics for bearings (1, 2) and the existence of elastohydrodynamic (ehd) lubricant films at ball and roller contacts (3), the calculation of which is now an accepted part of bearing engineering. These new concepts are now used in the design of lubrication systems with solid lubricants that operate in much more severe environments than oils and greases (4, 5). Proprietary computer codes and unique patented bearing configurations for optimizing the performance of bearing/solidlubricant systems have been developed (6, 7 and 8). In this way, patented self-contained solid-lubricated all-steel and hybrid-ceramic ball and roller bearings are now available for environments that do not contribute to their lubrication, such as in air or vacuum. With the development of space exploration technologies and urgent demand for resources exploitation, many countries have made their plans to explore the moon in the next fe

    Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction

    Get PDF
    Recent developments in compressive sensing (CS) show that it is possible to accurately reconstruct the magnetic resonance (MR) image from undersampled k-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model associated with the nonlocal total variation (NLTV) and the wavelet approximate sparsity. Nonlocal total variation can restore periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more accurate sparse reconstruction than fixed wavelet l0 and l1 norm. Furthermore, a variable splitting and augmented Lagrangian algorithm is presented to solve the proposed minimization problem. Experimental results on MR image reconstruction demonstrate that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality assessment

    High-Temperature Oxidation Performance of 4Cr4Mo2NiMnSiV Hot Die Steel

    Get PDF
    A new type of hot working die steel was designed by using JMatPro, and high-temperature oxidation tests were carried out in the ambient atmosphere at 600 ℃ and 700 ℃. The heat treatment process and oxidation mechanism of the designed 4Cr4Mo2NiMnSiV steel were studied in detail. XRD, SEM and EDS were used to analyze the crystallographic phases, surface and cross-section morphologies of the oxide films. The results show that the main phases in the 4Cr4Mo2NiMnSiV steel were γ and α + δ. During the high-temperature oxidation, oxidation of the Fe outer layer and Cr inner layer occurred. After oxidation at 600℃, the surface oxidation layer comprised a monolayer with an uneven morphology. The surface oxide film had two layers after oxidation at 700℃. The outer oxide layer mainly contained Fe2O3 and Fe3O4, while the inner oxide layer mainly contained Cr2O3. The microstructure was relatively regular and had a significant effect on the protection of the metallic matrix. When oxidized, the 4Cr4Mo2NiMnSiV alloy steel easily formed protective layers, such as Cr2O3 and SiO2, so that the test steel had excellent oxidation resistance at high temperatures

    Feeling the force: how pollen tubes deal with obstacles

    Full text link
    Physical forces are involved in the regulation of plant development and morphogenesis by translating mechanical stress into the modification of physiological processes, which, in turn, can affect cellular growth. Pollen tubes respond rapidly to external stimuli and provide an ideal system to study the effect of mechanical cues at the single‐cell level. Here, pollen tubes were exposed to mechanical stress while monitoring the reconfiguration of their growth and recording the generated forces in real‐time. We combined a lab‐on‐a‐chip device with a microelectromechanical systems (MEMS)‐based capacitive force sensor to mimic and quantify the forces that are involved in pollen tube navigation upon confronting mechanical obstacles. Several stages of obstacle avoidance were identified, including force perception, growth adjustment and penetration. We have experimentally determined the perceptive force threshold, which is the force threshold at which the pollen tube reacts to an obstacle, for Lilium longiflorum and Arabidopsis thaliana. In addition, the method we developed provides a way to calculate turgor pressure based on force and optical data. Pollen tubes sense physical barriers and actively adjust their growth behavior to overcome them. Furthermore, our system offers an ideal platform to investigate intracellular activity during force perception and growth adaption in tip growing cells

    Pre-Operative Prediction of Mediastinal Node Metastasis Using Radiomics Model Based on 18F-FDG PET/CT of the Primary Tumor in Non-Small Cell Lung Cancer Patients

    Get PDF
    Purpose: We investigated whether a fluorine-18-fluorodeoxy glucose positron emission tomography/computed tomography (18F-FDG PET/CT)-based radiomics model (RM) could predict the pathological mediastinal lymph node staging (pN staging) in patients with non-small cell lung cancer (NSCLC) undergoing surgery.Methods: A total of 716 patients with a clinicopathological diagnosis of NSCLC were included in this retrospective study. The prediction model was developed in a training cohort that consisted of 501 patients. Radiomics features were extracted from the 18F-FDG PET/CT of the primary tumor. Support vector machine and extremely randomized trees were used to build the RM. Internal validation was assessed. An independent testing cohort contained the remaining 215 patients. The performances of the RM and clinical node staging (cN staging) in predicting pN staging (pN0 vs. pN1 and N2) were compared for each cohort. The area under the curve (AUC) of the receiver operating characteristic curve was applied to assess the model's performance.Results: The AUC of the RM [0.81 (95% CI, 0.771–0.848); sensitivity: 0.794; specificity: 0.704] for the predictive performance of pN1 and N2 was significantly better than that of cN in the training cohort [0.685 (95% CI, 0.644–0.728); sensitivity: 0.804; specificity: 0.568], (P-value = 8.29e-07, as assessed by the Delong test). In the testing cohort, the AUC of the RM [0.766 (95% CI, 0.702–0.830); sensitivity: 0.688; specificity: 0.704] was also significantly higher than that of cN [0.685 (95% CI, 0.619–0.747); sensitivity: 0.799; specificity: 0.568], (P = 0.0371, Delong test).Conclusions: The RM based on 18F-FDG PET/CT has a potential for the pN staging in patients with NSCLC, suggesting that therapeutic planning could be tailored according to the predictions

    The role of upfront primary tumor resection in asymptomatic patients with unresectable stage IV colorectal cancer: A systematic review and meta-analysis

    Get PDF
    BackgroundControversy exists over the role of upfront primary tumor resection (PTR) in asymptomatic patients with unresectable stage IV colorectal cancer (CRC). The purpose of this study was to evaluate the effect of upfront PTR on survival outcomes and adverse outcomes.MethodsSearches were conducted on PubMed, EMBASE, Web of Science, and Cochrane Library from inception to August 2021. Studies comparing survival outcomes with or without adverse outcomes between PTR and non-PTR treatments were included. Review Manager 5.3 was applied for meta-analyses with a random-effects model whenever possible.ResultsOverall, 20 studies with 3,088 patients were finally included in this systematic review. Compared with non-PTR, upfront PTR was associated with better 3-year (HR: 0.69, 95% CI, 0.57–0.83, P = 0.0001) and 5-year overall survival (OS) (HR: 0.77, 95% CI, 0.62–0.95, P = 0.01), while subgroup analysis indicated that there was no significant difference between upfront PTR and upfront chemotherapy (CT) group. In addition, grade 3 or higher adverse effects due to CT were more frequent in the PTR group with marginal significance (OR: 1.74, 95% CI, 0.99–3.06, P = 0.05), and other adverse outcomes were comparable.ConclusionsPTR might be related to improved OS for asymptomatic patients with unresectable stage IV CRC, whereas receiving upfront CT is a rational alternative without detrimental influence on survival or adverse outcomes compared with upfront PTR.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=27267

    Control cell migration by engineering integrin ligand assembly

    Get PDF
    Advances in mechanistic understanding of integrin-mediated adhesion highlight the importance of precise control of ligand presentation in directing cell migration. Top-down nanopatterning limited the spatial presentation to sub-micron placing restrictions on both fundamental study and biomedical applications. To break the constraint, here we propose a bottom-up nanofabrication strategy to enhance the spatial resolution to the molecular level using simple formulation that is applicable as treatment agent. Via self-assembly and co-assembly, precise control of ligand presentation is succeeded by varying the proportions of assembling ligand and nonfunctional peptide. Assembled nanofilaments fulfill multi-functions exerting enhancement to suppression effect on cell migration with tunable amplitudes. Self-assembled nanofilaments possessing by far the highest ligand density prevent integrin/actin disassembly at cell rear, which expands the perspective of ligand-density-dependent-modulation, revealing valuable inputs to therapeutic innovations in tumor metastasis
    corecore