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Recent developments in compressive sensing (CS) show that it is possible to accurately reconstruct the magnetic resonance (MR)
image from undersampled 𝑘-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce
the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model
associated with the nonlocal total variation (NLTV) and the wavelet approximate sparsity. Nonlocal total variation can restore
periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more
accurate sparse reconstruction than fixed wavelet ℓ

0
and ℓ

1
norm. Furthermore, a variable splitting and augmented Lagrangian

algorithm is presented to solve the proposedminimization problem. Experimental results onMR image reconstruction demonstrate
that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality
assessment.

1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive and
nonionizing imaging processing. Due to its noninvasiveman-
ner and intuitive visualization of both anatomical structure
and physiological function, MRI has been widely applied in
clinical diagnosis. Imaging speed is important in many MRI
applications. However, both scanning and reconstruction
speed ofMRIwill affect the quality of reconstructed image. In
spite of advances in hardware and pulse sequences, the speed,
at which the data can be collected in MRI, is fundamentally
limited by physical and physiological constraints. Therefore
many researchers are seeking methods to reduce the amount
of acquired data without degrading the image quality [1–3].

In recent years, the compressive sensing (CS) framework
has been successfully used to reconstruct MR images from
highly undersampled 𝑘-space data [4–9]. According to CS
theory [10, 11], signals/images can be accurately recovered
by using significantly fewer measurements than the number
of unknowns or than mandated by traditional Nyquist sam-
pling. MR image acquisition can be looked at as a special case
of CSwhere the sampled linear combinations are simply indi-
vidual Fourier coefficients (𝑘-space samples). Therefore, CS

is claimed to be able to make accurate reconstructions from
a small subset of 𝑘-space data. In compressive sensing MRI
(CSMRI), we can reconstruct a MR image with good quality
from only a small number of measurements. Therefore, the
application of CS to MRI has potential for significant scan
time reductions, with benefits for patients and health care
economics.

Because of the ill-posed nature of the CSMRI recon-
struction problem, regularization terms are required for a
reasonable solution. In existing CSMRI models, the most
popular regularizers are ℓ

0
, ℓ
1
sparsity [4, 9, 12] and total

variation (TV) [3, 13]. The ℓ
0
sparsity regularized CSMRI

model can be understood as a penalized least square with
ℓ
0
norm penalty. It is well known that the complexity of

this model is proportional with the number of variables.
Particularly when the number is large, solving the model
generally is intractable. The ℓ

1
regularization problem can

be transformed into an equivalent convex quadratic opti-
mization problem and, therefore, can be very efficiently
solved. And under some conditions, the resultant solution
of ℓ
1
regularization coincides with one of the solutions of

ℓ
0
regularization [14]. Nevertheless, while ℓ

1
regularization

provides the best convex approximation to ℓ
0
regularization
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and it is computationally efficient, the ℓ
1
regularization often

introduces extra bias in estimation and cannot reconstruct an
image with the least measurements when applied to CSMRI
[15]. In recent years, the ℓ

𝑞
(0 < 𝑞 < 1) regularization

[16, 17] was introduced into CSMRI, since ℓ
𝑞
regularization

can assuredly generate much sparser solutions than ℓ
1
reg-

ularization. Although the ℓ
𝑞
regularizations achieve better

performance, they always fall into local minima. Moreover,
which 𝑞 should yield a best result is also a problem. Trzasko
and Manduca [18] proposed a CSMRI paradigm based on
homotopic approximation of the ℓ

0
quasinorm.Although this

method has no guarantee of achieving a global minimum,
it achieves accurate MR image reconstructions at higher
undersampling rates than ℓ

1
regularization. And it was faster

than those ℓ
𝑞
regularization methods. Recently, Chen and

Huang [19] accelerated MRI by introducing the wavelet tree
structural sparsity into the CSMRI.

Despite high effectiveness in CSMRI recovery, sparsity
and TV regularizers often suffer from undesirable visual
artifacts and staircase effects. To overcome those drawbacks,
some hybrid sparsity and TV regularization methods [5–
8] are proposed. In [5], Huang et al. proposed a new opti-
mization algorithm for MR image reconstruction method,
named fast composite splitting algorithm (FCSA), which is
based on the combination of variable and operator splitting
techniques. In [8], Yang et al. proposed a variable splitting
method (RecPF) to solve hybrid sparsity and TV regularized
MR image reconstruction optimization problem. Ma et al.
[20] proposed an operator splitting algorithm (TVCMRI) for
MR reconstruction. In order to deal with the problem of low
andhigh frequency coefficientsmeasurement, Zhang et al. [6]
proposed a new so-called TVWL2-L1 model which measures
low frequency coefficients and high frequency coefficients
with ℓ

2
norm and ℓ

1
norm. In [7], an experimental study on

the choice of CSMRI regularizations was given. Although the
classical TV regularization performs well in CSMRI recon-
struction while preserving edges, especially for cartoon-
like MR images, it is well known that TV regularization
is not suitable for images with fine details and it often
tends to oversmooth image details and textures. Nonlocal
TV regularization extends the classical TV regularization by
nonlocal means filter [21] and has been shown to outperform
the TV in several inverse problems such as image deonising
[22], deconvolution [23], and compressive sensing [24, 25].
In order to improve the signal-to-noise ratio and preserve
the fine details of MR images, Gopi et al. [26], Huang and
Yang [27], and Liang et al. [28] have proposed nonlocal
TV regularization based MR reconstruction and sensitivity
encoding reconstruction.

In this paper, we proposed a novel compound regulariza-
tion based compressive MR image reconstruction method,
which exploits the nonlocal total variation (NLTV) and
the approximate sparsity prior. The approximate sparsity,
which is used to replace the traditional ℓ

0
regularizer and

ℓ
1
regularizer of compressive MR image reconstruction

model, is sparser and much easier to be solved. The NLTV
is much better than TV for preserving the sharp edges
and meanwhile recovering the local structure details. In
order to compound regularization model, we develop an

alternative iterative scheme by using the variable splitting
and augmented Lagrangian algorithm. Experimental results
show that the proposed method can effectively improve the
quality of MR image reconstruction. The rest of the paper is
organized as follows. In Section 2 we review the compressive
sensing and MRI reconstruction. In Section 3 we propose
our model and algorithm. The experimental results and
conclusions will be shown in Sections 4 and 5, respectively.

2. Compressive Sensing and
MRI Reconstruction

Compressive sensing [10, 11], as a new sampling and com-
pression theory, is able to reconstruct an unknown signal
from a very limited number of samples. It provides a firm
theoretical foundation for the accurate reconstruction of
MRI from highly undersampled 𝐾-space measurements and
significantly reduces the MRI scan duration.

Supposeu ∈ R𝑁 is aMR image andF ∈ R𝑀×𝑁 is a partial
Fourier transform; then the sampling measurement b ∈ R𝑀
of MR image u in 𝐾-space can be defined as

b = Fu. (1)
The compressive MR image reconstruction problem is to
recover u given the measurement b and the sampling matrix
F. Undersampling occurs whenever the number of 𝐾-space
sample is less than the number of unknowns (𝑀 < 𝑁). In
that case, the compressive MR image reconstruction is an
underdetermined problem.

In general, compressive sensing reconstructs the
unknowns u from the measurements b by minimizing the
ℓ
0
norm of the sparsified image Φu, where Φ represents

a sparsity transform for the image. In this paper, we
choose the orthonormal wavelet transform as the sparsity
transform for the image. Then the typical compressive MR
image reconstruction is obtained by solving the following
constrained optimization problem [4, 9, 12]:

minu ‖Φu‖0

s.t. b = Fu.
(2)

However, in terms of computational complexity, the ℓ
0
norm

optimization problem (2) is a typical NP-hard problem, and
it was difficult to solve. According to the certain condition
of the restricted isometric property, the ℓ

0
norm can be

replaced by the ℓ
1
norm.Therefore, the optimization problem

(2) is relaxed to alternative convex optimization problem as
follows:

minu ‖Φu‖1

s.t. b = Fu.
(3)

When the measurements b are contaminated with noise, the
typical compressive MR image reconstruction problem using
ℓ
1
relaxation of the ℓ

0
norm is formulated as the following

unconstrained Lagrangian version:

minu ‖Fu − b‖
2

2
+ 𝛼‖Φu‖1, (4)

where 𝛼 is a positive parameter.
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Despite high effectiveness of sparsity regularized com-
pressive MR image reconstruction methods, they often suffer
from undesirable visual artifacts such as Gibbs ringing in
the result. Due to its desirable ability to preserve edges, total
variation (TV) model is successfully used in compressive
MR image reconstruction [3, 13]. But the TV regularizer has
still some limitations that restrict its performance, which
cannot generate good enough results for images with many
small structures and often suffers from staircase artifacts. In
order to combine the advantages of sparsity-based and TV
model and avoid their main drawbacks, a TV regularizer,
corresponding to a finite-difference for the sparsifying trans-
form, is typically incorporated into the sparsity regularized
compressive MR image reconstruction [5–8]. In this case the
optimization problem is written as

minu ‖Fu − b‖
2

2
+ 𝛼‖Φu‖1 + 𝛽‖∇u‖1, (5)

where𝛽 is a positive parameter.TheTVwas defineddiscretely
as ‖∇u‖

1
= ∑
𝑖
(|∇
ℎ
𝑢
𝑖
| + |∇V𝑢𝑖|), where ∇ℎ and ∇V are the

horizontal and the vertical gradient operators, respectively.
The compound optimization model (5) is based on the
fact that the piecewise smooth MR images can be sparsely
represented by the wavelet and should have small total
variations.

3. Proposed Model and Algorithm

As mentioned above, joint TV and ℓ
1
norm minimization

model is a useful way to reconstruct MR images. How-
ever, they have still some limitations that restrict their
performance. ℓ

0
norm needs a combinatorial search for its

minimization and its too high sensibility to noise. ℓ
1
problems

can be very efficiently solved. But the solution is not sparse,
which influences the performance of MRI reconstruction.
The TV model can preserve edges, but it tends to flatten
inhomogeneous areas, such as textures. To overcome those
shortcomings, a novel method is proposed for compressive
MR imaging based on the wavelet approximate sparsity
and nonlocal total variation (NLTV) regularization, named
WasNLTV.

3.1. Approximate Sparsity. The problems of using ℓ
0
norm in

compressive MR imaging (i.e., the need for a combinatorial
search for its minimization and its too high sensibility to
noise) are both due to the fact that the ℓ

0
norm of a vector is

a discontinuous function of that vector. The same as [29, 30],
our idea is to approximate this discontinuous function by a
continuous one, named approximate sparsity function, which
provides smoothmeasure of ℓ

0
norm and better sparsity than

ℓ
1
regularizer.
The approximate sparsity function is defined as

𝜓
𝜎 (𝑥) =

2

𝜋
arctan(|𝑥|

𝜎2
) , 𝑥 ∈ R, 𝜎 ∈ R

+
. (6)

The parameter 𝜎 may be used to control the accuracy with
which 𝜓

𝜎
approximate the Kronecker delta. In mathematical

terms, we have

lim
𝜎→0

𝜓
𝜎
(𝑥) = {

1, 𝑥 ̸= 0,

0, 𝑥 = 0.
(7)

Define the continuous multivariate approximate sparsity
function Ψ

𝜎
(x) as

Ψ
𝜎
(x) =

𝑚

∑

𝑖=1

𝜓
𝜎
(𝑥
𝑖
) , x ∈ R𝑚×1. (8)

It is clear from (7) thatΨ
𝜎
(x) is an indicator of the number of

zero-entries in x for small values of 𝜎. Therefore, ℓ
0
norm can

be approximate by

‖x‖0 ≈ Ψ𝜎 (x) =
𝑚

∑

𝑖=1

𝜓
𝜎
(𝑥
𝑖
) . (9)

Note that the larger the value of 𝜎, the smoother the Ψ
𝜎
(x)

and the worse the approximation to ℓ
0
norm; the smaller the

value of ℓ
0
norm, the closer the behavior ofΨ

𝜎
(x) to ℓ

0
norm.

3.2. Nonlocal Total Variation. Although the classical TV is
surprisingly efficient for preserving edges, it is well known
that TV is not suitable for images with fine structures, details,
and textures which are very important to MR images. The
NLTV is a variational extension of the nonlocal means filter
proposed by Wang et al. [30]. NLTV uses the whole image
information instead of using adjacent pixel information to
calculate the gradients in regularization term.The NLTV has
been proven to be more efficient than TV for improving the
signal-to-noise ratio, on preserving not only sharp edges,
but also fine details and repetitive patterns [26–28]. In this
paper, we use the NLTV to replace the TV in compound
regularization based compressive MR image reconstruction.

Let Ω ⊂ R2, 𝑖, 𝑗 ∈ Ω, 𝑢(𝑥) be a real function 𝑢 : Ω →
R, and let 𝑤(𝑥, 𝑦) be a weight function. For a given image
𝑢(𝑥), the weighted graph gradient is ∇

𝑁𝐿
𝑢(𝑥) if defined as the

vector of all directional derivatives ∇
𝑁𝐿
𝑢(𝑥, ⋅) at 𝑥:

∇
𝑁𝐿
𝑢 (𝑥, 𝑦) := (𝑢 (𝑦) − 𝑢 (𝑥))√𝑤 (𝑥, 𝑦), ∀𝑦 ∈ Ω. (10)

The directional derivatives apply to all the nodes 𝑦 since the
weight𝑤(𝑥, 𝑦) is extended to the whole domainΩ×Ω. Let us
denote vectors such that 󳨀⇀𝑝 = 𝑝(𝑥, 𝑦) ∈ Ω × Ω; the nonlocal
graph divergence (div

𝑁𝐿

󳨀⇀
𝑝) : Ω × Ω → Ω is defined as the

adjoint of the nonlocal gradient:

(div
𝑁𝐿

󳨀⇀
𝑝) (𝑥) := ∑

𝑦∈Ω

(𝑝 (𝑥, 𝑦) − 𝑝 (𝑦, 𝑥))√𝑤 (𝑥, 𝑦). (11)

Due to being analogous to classical TV, the ℓ
1
norm

is in general more efficient than the ℓ
2
norm for sparse
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(a) Chest (b) Artery

(c) Cardiac (d) Brain

Figure 1: 2D test MR images.

reconstruction. In this paper, we are interested in NLTV.
Based on the above definition, theNLTV is defined as follows:

󵄩󵄩󵄩󵄩∇𝑁𝐿u
󵄩󵄩󵄩󵄩1 := ∑

𝑥∈Ω

󵄨󵄨󵄨󵄨∇𝑁𝐿𝑢 (𝑥)
󵄨󵄨󵄨󵄨

= ∑

𝑥∈Ω

√∑

𝑦∈Ω

(𝑢 (𝑥) − 𝑢 (𝑦))
2
𝑤 (𝑥, 𝑦).

(12)

Theweight function𝑤(𝑥, 𝑦) denotes howmuch the difference
between pixels 𝑥 and 𝑦 is penalized in the images, which is
calculated by

𝑤 (𝑥, 𝑦) =
1

𝐶
𝑢

exp(
−
󵄩󵄩󵄩󵄩𝑓𝑢 (𝑥) − 𝑓𝑢 (𝑦)

󵄩󵄩󵄩󵄩
2

2ℎ2
) , (13)

where 𝑓
𝑢
(𝑥) and 𝑓

𝑢
(𝑦) denote a small patch in image 𝑢

centering at the coordinates 𝑥 and 𝑦, respectively. 𝐶
𝑢
=

∑
𝑦∈Ω
𝑤(𝑥, 𝑦) is the normalizing factor. ℎ is a filtering param-

eter.

3.3. The Description of Proposed Model and Algorithm.
According to the compressive MR image reconstruction
models described in Section 2, the proposed WasNLTV
model for compressive MR image reconstruction is

minu ‖Fu − b‖
2

2
+ 𝛼Ψ (Φu) + 𝛽󵄩󵄩󵄩󵄩∇𝑁𝐿u

󵄩󵄩󵄩󵄩1. (14)

It should be noted that the optimization problem in (14),
although convex, is very hard to solve owing to nons-
mooth terms and its huge dimensionality. To solve the
problem in (14), we use the variable splitting and aug-
mented Lagrangian algorithm following closely the method-
ology introduced in [31]. The core idea is to intro-
duce a set of new variables per regularizer and then
exploit the alternating direction method of multipliers
(ADMM) to solve the resulting constrained optimization
problems.
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Figure 2: Performance comparisons (sampling rate versus SNR) on different MR images.

By introducing an intermediate variable vector (k
1
, k
2
,

k
3
), the problem (14) can be transformed into an equivalent

one; that is,

minu,k
1
,k
2
,k
3

󵄩󵄩󵄩󵄩k1 − b
󵄩󵄩󵄩󵄩
2

2
+ 𝛼Ψ (k

2
) + 𝛽

󵄩󵄩󵄩󵄩k3
󵄩󵄩󵄩󵄩1

s.t. Fu = k
1
, Φu = k

2
, ∇

𝑁𝐿
u = k
3
.

(15)

The optimization problem (15) can be written in a compact
form as follows:

minu,k 𝑔 (k)

s.t. Gu + Bk = 0,
(16)

where
k ≡ (k

1
, k
2
, k
3
) ,

𝑔 (k) = 󵄩󵄩󵄩󵄩k1 − b
󵄩󵄩󵄩󵄩
2

2
+ 𝛼Ψ (k

2
) + 𝛽

󵄩󵄩󵄩󵄩k3
󵄩󵄩󵄩󵄩1,

G = [
[

F
Φ

∇
𝑁𝐿

]

]

, B = [
[

−I 0 0

0 −I 0
0 0 −I

]

]

.

(17)

The augmented Lagrangian of problem (16) is

L (u, k, d) = 𝑔 (k) +
𝜇

2
‖Gu + Bk − d‖2

2
, (18)

where 𝜇 > 0 is a positive constant, d ≡ (d
1
, d
2
, d
3
),

and d/𝜇 denotes the Lagrangian multipliers associated to
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(a) TVCMRI (b) Cropped TVCMRI (c) RecPF

(d) Cropped RecPF (e) FCSA (f) Cropped FCSA

(g) WasNLTV (h) Cropped WasNLTV

Figure 3: Reconstructed cardiac MR images from 20% sampling.

the constraint Gu + Bk = 0. The basic idea of the augmented
Lagrangian method is to seek a saddle point of L(u, k, d),
which is also the solution of problem (16). By using ADMM
algorithm, we solve the problem (16) by iteratively solving the
following problems:

(u𝑘+1, k𝑘+1) = minu,k L (u, k, d) , (19)

d𝑘+1 = d𝑘 − Gu𝑘+1 − Bk𝑘+1. (20)

It is evident that the minimization problem (19) is still
hard to solve efficiently in a direct way, since it involves a
nonseparable quadratic term and nondifferentiability terms.

To solve this problem, a quite useful ADMM algorithm is
employed, which alternatively minimizes one variable while
fixing the other variables. By using ADMM, the problem (19)
can be solved by the following four subproblems with respect
to u and k.

(1) u subproblem: by fixing k and d, the optimization
problem (19) to be solved is

u𝑘+1 = minu
𝜇

2

󵄩󵄩󵄩󵄩󵄩
Fu − k𝑘

1
− d𝑘
1

󵄩󵄩󵄩󵄩󵄩

2

2
+
𝜇

2

󵄩󵄩󵄩󵄩󵄩
Φu − k𝑘

2
− d𝑘
2

󵄩󵄩󵄩󵄩󵄩

2

2

+
𝜇

2

󵄩󵄩󵄩󵄩󵄩
∇
𝑁𝐿

u − k𝑘
3
− d𝑘
3

󵄩󵄩󵄩󵄩󵄩

2

2
.

(21)
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Initialization: set 𝑘 = 0, choose 𝛼, 𝛽, 𝜇, u0, k0
1
, k0
2
, and k0

3

repeat:
compute u sub-problem: u𝑘+1 = minu 𝜇/2‖Gu + Bk − d‖2

2
based on (23)

for 𝑖 = 1, . . . , 3
computer k

𝑖
sub-problem: k𝑘+1

𝑖
= minv𝑖 𝑔 (k𝑖) + 𝜇/2

󵄩󵄩󵄩󵄩Gu + Bk𝑖 − d𝑖
󵄩󵄩󵄩󵄩
2

2
based on (25), (27) and (29)

end for
update Lagrange multipliers:

d𝑘+1
1
= d𝑘
1
− Fu𝑘+1 + k𝑘+1

1

d𝑘+1
2
= d𝑘
2
−Φu𝑘+1 + k𝑘+1

2

d𝑘+1
3
= d𝑘
3
− ∇
𝑁𝐿
u𝑘+1 + k𝑘+1

3

update iteration: 𝑘 = 𝑘 + 1
until the stopping criterion is satisfied.

Algorithm 1: Pseudocode of WasNLTV based compressive MR image reconstruction.

It is clear that problem (21) is a quadratic function. By
direct computation, we get the Euler-Lagrange equation for
(21):

𝜇F𝑇 (Fu − k𝑘
1
− d𝑘
1
) + 𝜇Φ

𝑇
(Φu − k𝑘

2
− d𝑘
2
)

+ 𝜇div
𝑁𝐿
(∇
𝑁𝐿

u − k𝑘
3
− d𝑘
3
) = 0.

(22)

Therefore, the solution of problem (21) is

u𝑘+1 = (F𝑇F +Φ𝑇Φ + Δ
𝑁𝐿
)
−1

× (F𝑇 (k𝑘+1
1
+ d𝑘+1
1
) +Φ

𝑇
(k𝑘+1
2
+ d𝑘+1
2
)

+ div
𝑁𝐿
(k𝑘+
3
+ d𝑘+1
3
)) .

(23)

Due to the computational complexity of NLTV, the same
as [27], the NLTV regularization in this paper only runs one
time.

(2) k
1
subproblem: by fixing k

2
, k
3
,u, andd, the optimiza-

tion problem (19) to be solved is

k𝑘+1
1
= min

k
1

󵄩󵄩󵄩󵄩k1 − b
󵄩󵄩󵄩󵄩
2

2
+
𝜇

2

󵄩󵄩󵄩󵄩󵄩
Fu𝑘+1 − k

1
− d𝑘+1
1

󵄩󵄩󵄩󵄩󵄩

2

2
. (24)

Clearly, the problem (24) is a quadratic function; its solution
is simply

k𝑘+1
1
=
(2b + 𝜇Fu𝑘+1 − 𝜇d𝑘+1

1
)

(2 + 𝜇)
. (25)

(3) k
2
subproblem: by fixing k

1
, k
3
,u, andd, the optimiza-

tion problem (19) to be solved is

k𝑘+1
2
= min

k
2

𝛼Ψ (k
2
) +
𝜇

2

󵄩󵄩󵄩󵄩󵄩
Φu𝑘+1 − k

2
− d𝑘+1
2

󵄩󵄩󵄩󵄩󵄩

2

2
. (26)

The same as problem (24), the problem (26) is a
quadratic function and its gradient ∇k

2

is simplified as

Table 1: SNR (dB) results of different methods with different
sampling ratios.

Image Samp. ratio TVCMRI RecPF FCSA WasNLTV

Chest
(220 × 220)

10 8.12 8.15 8.31 8.74
20 13.12 13.28 13.75 14.70
30 17.71 18.15 19.19 20.39
40 20.95 21.35 22.59 23.64
50 24.19 24.49 26.12 26.97

Artery
(220 × 220)

10 8.17 8.39 12.40 13.35
20 14.78 15.51 20.35 21.20
30 18.57 19.86 24.61 25.43
40 22.02 23.66 28.35 29.33
50 24.74 26.62 32.08 33.60

Cardiac
(192 × 192)

10 3.77 1.06 4.34 5.19
20 13.45 13.80 15.24 16.01
30 16.93 17.38 18.25 18.97
40 17.07 17.67 18.62 21.71
50 21.26 21.62 22.52 23.24

Brain
(210 × 210)

10 4.09 4.14 4.84 5.23
20 10.40 10.64 16.18 17.58
30 14.37 14.85 21.33 22.13
40 17.65 18.34 25.17 25.93
50 21.57 22.45 28.85 29.75

∇k
2

= 𝜇(k
2
−Φu𝑘+1 + d𝑘+1

2
) + 2𝛼𝜎

2
/𝜋(𝜎
2
+ k
2
)
−2. The steepest

descent method is desirable to use to solve (26) iteratively by
applying

k𝑘+1
2
= k𝑘
2
− 𝜂∇k

2

. (27)

(4) k
3
subproblem: by fixing k

1
, k
2
,u, andd, the optimiza-

tion problem (19) to be solved is

k𝑘+1
3
= min

k
3

𝛽
󵄩󵄩󵄩󵄩k3
󵄩󵄩󵄩󵄩1 +

𝜇

2

󵄩󵄩󵄩󵄩󵄩
∇
𝑁𝐿

u𝑘+1 − k
3
− d𝑘+1
3

󵄩󵄩󵄩󵄩󵄩

2

2
. (28)
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(a) TVCMRI (b) Cropped TVCMRI (c) RecPF

(d) Cropped RecPF (e) FCSA (f) Cropped FCSA

(g) WasNLTV (h) Cropped WasNLTV

Figure 4: Reconstructed brain MR images from 20% sampling.

Problem (28) is a ℓ
1
norm regularized optimization problem.

Its solution is the well-known soft threshold [32]:

k𝑘+1
3
= soft(∇

𝑁𝐿
u𝑘+1 − d𝑘+1

3
,
𝛽

𝜇
) , (29)

where soft(𝑦, 𝜏) = sign(𝑦)max{|𝑦| − 𝜏, 0} denotes the
component-wise application of soft-threshold function.

In conclusion, the ADMM algorithm for optimization
problem (16) is shown in Algorithm 1.

4. Experimental Results

In this section, a series of experiments on four 2DMR images
(named brain, chest, artery, and cardiac) are implemented to
evaluate the proposed and existing methods. Figure 1 shows
the test images. All experiments are conducted on a PC
with an Intel Core i7-3520M, 2.90GHz CPU, in MATLAB
environment. The proposed method (named WasNLTV) is
compared with the existing methods including TVCMRI
[19], RecPF [8], and FCSA [5]. We evaluate the perfor-
mance of various methods both visually and qualitatively in
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(a) TVCMRI (b) Cropped TVCMRI (c) RecPF

(d) Cropped RecPF (e) FCSA (f) Cropped FCSA

(g) WasNLTV (h) Cropped WasNLTV

Figure 5: Reconstructed chest MR images from 20% sampling.

signal-to-noise ratio (SNR) and root-mean-square error
(RMSE) values. The SNR and RMSE are defined as

SNR = 10 log
10

‖u − 𝐸 (u)‖2
2

‖u − ũ‖2
2

,

RMSE = √𝐸 ((u − ũ)2),

(30)

where u and ũ denote the original image and the recon-
structed image, respectively, and 𝐸(⋅) is the mean function.

For fair comparisons, experiment uses the same observa-
tion methods with TVCMRI. In the 𝐾-space, we randomly

obtain more samples in low frequencies and fewer samples in
higher frequencies. This sampling scheme is widely used for
compressedMR image reconstructions. Suppose aMR image
u has𝑁 pixels and the partial Fourier transform F in problem
(1) consists of 𝑀 rows of 𝑁 × 𝑁 matrix corresponding to
the full 2D discrete Fourier transform. The 𝑀 chosen rows
correspond to the sampling measurements b. Therefore, the
sampling ratio is defined as 𝑀/𝑁. In the experiments, the
Gaussian white noise generated by 𝜎

𝑛
× randn (𝑀, 1) in

MATLAB is added, where standard deviation 𝜎
𝑛
= 0.01. The

regularization parameters 𝛼, 𝛽, and 𝜇 are set as 0.001, 0.035,
and 1, respectively. To be fair to compare the reconstruction
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(a) TVCMRI (b) Cropped TVCMRI (c) RecPF

(d) Cropped RecPF (e) FCSA (f) Cropped FCSA

(g) WasNLTV (h) Cropped WasNLTV

Figure 6: Reconstructed artery MR images from 20% sampling.

MR images of various algorithms, all methods run 50 iter-
ations and the Rice wavelet toolbox is used as the wavelet
transform.

Table 1 summarizes the average reconstruction accuracy
obtained by using different methods at different sampling
ratios on the set of test images. From Table 1, it can be
seen that the proposedWasNLTVmethod attains the highest
SNR (dB) in all cases. Figure 2 plots the SNR values with
sampling ratios for different images. It can also be seen that
the WasNLTV method achieves the larger improvement of
SNR values.

Table 2 gives the RMSE results of reconstructed MRI
after applying different algorithms. From Table 2, it can be
seen that WasNLTV method attains the lowest RMSE in
all cases. As is known, the lower the RMSE is, the better
the reconstructed image is. That is to say the MR images
reconstructed by WasNLTV have the best visual quality.

To illustrate visual quality, reconstructed compressiveMR
images obtained using differentmethodswith sampling ratios
20% are shown in Figures 3, 4, 5, and 6. For better visual
comparison, we zoom in a small patch where the edge and
texture are much more abundant. From the figures, it can be
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Figure 7: Performance comparisons (CPU-time versus SNR) on different MR images.

observed that the WasNLTV always obtains the best visual
effects on all MR images. In particular, the edge of organs and
tissues obtained by WasNLTV are much more clear and easy
to identify.

Figure 7 gives the performance comparisons between dif-
ferentmethods with sampling ratios 20% in terms of the CPU
time over the SNR. In general, the computational complexity
of NLTV is much higher than TV. In order to reduce the
computational complexity of WasNLTV, in the experiment,
we perform the NLTV regularization once in some iterations.
Despite the higher computational complexity of WasNLTV,
the WasNLTV obtains the best reconstruction results on
all MR images by achieving the highest SNR in less CPU
time.

5. Conclusions

In this paper, we propose a new compound regularization
based compressive sensingMRI reconstructionmodel, which
exploits the NLTV regularization and wavelet approximate
sparsity prior. The approximate sparsity prior is used in
compressiveMR image reconstructionmodel instead of ℓ

0
or

ℓ
1
norm, which can produce much sparser results. And the

optimization problem ismuch easier to be solved. Because the
NLTV takes advantage of the redundancy and self-similarity
in a MR image, it can effectively avoid blocky artifacts
caused by traditional TV regularization and keep fine edge
of organs and tissues. As for the algorithm, we apply the
variable splitting and augmented Lagrangian algorithm to
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Table 2: RMSE results of different methods with different sampling
ratios.

Image Samp. ratio TVCMRI RecPF FCSA WasNLTV

Chest
(220 × 220)

10 38.13 38.04 35.09 19.81
20 10.90 10.60 9.71 8.67
30 6.02 5.73 4.94 3.52
40 3.72 3.58 3.00 2.20
50 2.22 2.27 1.90 1.22

Artery
(220 × 220)

10 43.95 43.81 41.03 14.67
20 10.19 9.72 3.77 3.35
30 5.06 4.46 2.18 1.77
40 3.37 2.88 1.52 1.17
50 2.17 1.88 1.09 0.64

Cardiac
(192 × 192)

10 18.95 18.81 15.86 14.77
20 8.12 7.89 5.71 4.28
30 2.85 2.81 2.61 2.24
40 2.16 2.20 2.15 1.74
50 1.29 1.57 1.51 1.09

Brain
(210 × 210)

10 40.27 40.11 35.87 29.11
20 16.11 15.71 6.48 5.87
30 9.48 9.05 3.63 3.14
40 6.46 6.05 2.73 2.57
50 3.25 3.07 2.41 2.01

solve the compound regularization minimization problem.
Experiments on test images demonstrate that the proposed
method leads to high SNR measure and more importantly
preserves the details and edges of MR images.
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