2 research outputs found

    Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity

    No full text
    The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity

    Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity

    No full text
    Telomycin (TEM) is a cyclic depsipeptide antibiotic active against Gram-positive bacteria. In this study, five new natural telomycin analogues produced by <i>Streptomyces canus</i> ATCC 12646 were identified. To understand the biosynthetic machinery of telomycin and to generate more analogues by pathway engineering, the TEM biosynthesis gene cluster has been characterized from <i>S. canus</i> ATCC 12646: it spans approximately 80.5 kb and consists of 34 genes encoding fatty acid ligase, nonribosomal peptide synthetases (NRPSs), regulators, transporters, and tailoring enzymes. The gene cluster was heterologously expressed in <i>Streptomyces albus</i> J1074 setting the stage for convenient biosynthetic engineering, mutasynthesis, and production optimization. Moreover, in-frame deletions of one hydroxylase and two P450 monooxygenase genes resulted in the production of novel telomycin derivatives, revealing these genes to be responsible for the specific modification by hydroxylation of three amino acids found in the TEM backbone. Surprisingly, natural lipopeptide telomycin precursors were identified when characterizing an unusual precursor deacylation mechanism during telomycin maturation. By <i>in vivo</i> gene inactivation and <i>in vitro</i> biochemical characterization of the recombinant enzyme Tem25, the maturation process was shown to involve the cleavage of previously unknown telomycin precursor-lipopeptides, to yield 6-methylheptanoic acid and telomycins. These lipopeptides were isolated from an inactivation mutant of <i>tem25</i> encoding a (de)­acylase, structurally elucidated, and then shown to be deacylated by recombinant Tem25. The TEM precursor and several semisynthetic lipopeptide TEM derivatives showed rapid bactericidal killing and were active against several multidrug-resistant (MDR) Gram-positive pathogens, opening the path to future chemical optimization of telomycin for pharmaceutical application
    corecore