16 research outputs found

    Exploring the Cosmic Reionization Epoch in Frequency Space: An Improved Approach to Remove the Foreground in 21 cm Tomography

    Full text link
    Aiming to correctly restore the redshifted 21 cm signals emitted by the neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space to investigate whether they works satisfactorily with complex foreground, by quantitatively evaluate the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias bb and average ionization fraction xex_e of the reionization processes, at z=8z=8 and the noise level of 60 mK we find that, although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of Mpc-scale components of the 21 cm signals (75% for ≳6h−1\gtrsim 6h^{-1} Mpc scales and 34% for ≳1h−1\gtrsim 1h^{-1} Mpc scales) is lost because it tends to be mis-identified as part of the foreground when single-narrow-segment separation approach is applied. The best restoration of the 21 cm signals and the tightest determination of bb and xex_e can be obtained with the three-narrow-segment fitting technique as proposed in this paper. Similar results can be obtained at other redshifts.Comment: 33 pages, 14 figures. Accepted for publication in Ap

    Effect of Inhibiting NGAL Gene Expression on A549 Lung Cancer Cell Migration and Invasion

    No full text
    Background and objective To detect the expression of neutrophil gelatinase-assoeiated lipocalin (NGAL) in the different differentiations of lung cancer tissues and to study the mechanism of invasion of A549 cells affected by NGAL. Methods The expression of NGAL was detected by immunochemistry in lung cancer tissue and the tissue around edge of the cancer. The effect of NGAL expression on A549 cells was observed by using qRT-PCR and Western blot. The abilities of invasion and metastasis were evaluated by transwell invasion and migration assay, and cell scratch assay in vitro. The protein expression of E-cadherin, Vimentin was measured by immunofluoresence and Western blot. Results The positive expression rate of NGAL was 76.32% (58/76) in the lung cancer, 13.3% (4/30) in adjacent tissue by immunochemistry. NGAL expression levels in the lung cancer tissues were significantly higher than that in adjacent tissues. The rate of migration and invasion in NGAL-siRNA group was 60.4%±6.4% compared to 50.5%±4.4% in the control group, there was a significant difference (P<0.05). Vimentin was suppressed, and E-cadherin was upregulated when NGAL was inhibited. MMP-2 and MMP-9 decreased when NGAL was knocked down. Conclusion The expression level of NGAL is highly expressed in lung cancer. NGAL may be one of important indicators involved in lung cancer infiltrated and transferred. NGAL might be one of potential targets for lung cancer treatment

    The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure

    No full text
    Gut microbiome can participate in arsenic metabolism. However, its efficacy in the host under arsenic stress is still controversial. To clarify their roles in fecal arsenic excretion, tissue arsenic accumulation, host physiological states and metabolism, in this study, ninety-six C57BL/6 male mice were randomly divided to four groups, groups A and B were given sterile water, and groups C and D were given the third generation of broad-spectrum antibiotic (ceftriaxone) to erase the background gut microbiome. Subsequently, groups B and D were subchronicly exposed to arsenic containing feed prepared by adding arsenical mixture (rice arsenic composition) into control feed. In group D, the fecal total arsenic (CtAs) decreased by 25.5 %, iAsIII composition increased by 46.9 %, unclarified As (uAs) composition decreased by 92.4 %, and the liver CtAs increased by 26.7 %; the fecal CtAs was positively correlated with microbial richness and some metabolites (organic acids, amino acids, carbohydrates, SCFAs, hydrophilic bile acids and their derivatives); and fecal DMA was positively correlated with microbial richness and some metabolites (ferulic acid, benzenepropanoic acid and pentanoic acid); network analysis showed that the numbers of modules, nodes, links were decreased and vulnerability was increased; some SCFAs and hydrophilic bile acid decreased, and hydrophobic bile acids increased (Ps < 0.05). In the tissue samples of group D, Il-18 and Ifn-γ gene expression increased and intestinal barrier-related genes Muc2, Occludin and Zo-1 expression decreased (Ps < 0.05); serum glutathione and urine malondialdehyde significantly increased (Ps < 0.05); urine metabolome significantly changed and the variation was correlated with six SCFAs-producing bacteria, and some SCFAs including isobutyric acid, valeric acid and heptanoic acid decreased (Ps < 0.05). Therefore, the normal gut microbiome increases fecal arsenic excretion and biotransformation, which can maintain a healthier microbiome and metabolic functions, and alleviate the metabolic disorder for their mammal host under arsenic exposure

    Effects of dietary arsenic exposure on liver metabolism in mice

    No full text
    Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis

    Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    No full text
    International audienceWe derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs
    corecore