17 research outputs found

    Expression of the microRNA-143/145 cluster is decreased in hepatitis B virus-associated hepatocellular carcinoma and may serve as a biomarker for tumorigenesis in patients with chronic hepatitis B

    Get PDF
    The aims of the present study were to identify the expression profile of microRNA (miR)‑143/145 in hepatitis B virus (HBV)‑associated hepatocellular carcinoma (HCC), explore its association with prognosis and investigate whether the serum miR‑143/145 expression levels may serve as a diagnostic indicator of HBV‑associated HCC. The microRNA (miRNA) chromatin immunoprecipitation dataset was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus databases, and analyzed using the Wilcoxon signed‑rank test. It was observed that the expression of miR‑143 and miR‑145 was decreased 1.5‑fold in HBV‑associated HCC samples compared with non‑tumor tissue in the TCGA and the GSE22058 datasets (P\u3c0.01). Using the reverse transcription‑quantitative polymerase chain reaction, it was further confirmed that miR‑143/145 and their host gene MIR143HG were downregulated in HBV‑associated HCC tissues compared with corresponding distal non‑tumor tissues. The lower level of miR‑143 and miR‑145 expression was associated with tumor differentiation, and may thus be responsible for a poor prognosis of patients with HBV‑associated HCC. The receiver‑operating characteristic (ROC) curves were used to explore the potential value of miR‑143 and miR‑145 as biomarkers for predicting HBV‑associated HCC tumorigenesis. In serum, miR‑143/145 were identified to be significantly decreased in patients with HBV‑associated HCC compared with negative control patients, and their associated areas under the ROC curves were calculated at 0.813 and 0.852 (P\u3c0.05), with each having a sensitivity and a specificity close to 0.80. These results indicated that the decreased expression of the miR‑143/145 cluster and their host gene MIR143HG in HBV‑associated HCC tissue was associated with prognosis, and each of these miRNAs may serve as a valuable diagnostic biomarker for predicting HBV‑associated HCC tumorigenesis

    A Study on the Mechanisms of Interaction between Deep Foundation Pits and the Pile Foundations of Adjacent Skewed Arches as well as Methods for Deformation Control

    No full text
    The construction of deep foundation pits is characterized by heavy loads on pile foundations, complex interactions between the foundation pit and pile foundations, and stringent requirements for deformation control. In this work, FLAC3D was used to perform computational analyses on the displacement responses of pile caps and the retaining walls of foundation pits in a variety of cases and reinforcement schemes. The computational results indicate that the piles of skewed arches interact with the retaining walls of the foundation pits through soil masses. We also revealed the mechanism by which deep foundation pits interacted with the pile foundations of adjacent skewed arches. Based on the mechanisms of interaction between foundation pit excavations and the piles of skewed arches, we proposed three reinforcement schemes for controlling the deformations associated with these interactions. The arched wall reinforcement scheme could provide a satisfactory result in terms of the control of horizontal displacements in the pile foundations and project costs

    Expression of the microRNA-143/145 cluster is decreased in hepatitis B virus-associated hepatocellular carcinoma and may serve as a biomarker for tumorigenesis in patients with chronic hepatitis B

    Get PDF
    The aims of the present study were to identify the expression profile of microRNA (miR)‑143/145 in hepatitis B virus (HBV)‑associated hepatocellular carcinoma (HCC), explore its association with prognosis and investigate whether the serum miR‑143/145 expression levels may serve as a diagnostic indicator of HBV‑associated HCC. The microRNA (miRNA) chromatin immunoprecipitation dataset was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus databases, and analyzed using the Wilcoxon signed‑rank test. It was observed that the expression of miR‑143 and miR‑145 was decreased 1.5‑fold in HBV‑associated HCC samples compared with non‑tumor tissue in the TCGA and the GSE22058 datasets (P\u3c0.01). Using the reverse transcription‑quantitative polymerase chain reaction, it was further confirmed that miR‑143/145 and their host gene MIR143HG were downregulated in HBV‑associated HCC tissues compared with corresponding distal non‑tumor tissues. The lower level of miR‑143 and miR‑145 expression was associated with tumor differentiation, and may thus be responsible for a poor prognosis of patients with HBV‑associated HCC. The receiver‑operating characteristic (ROC) curves were used to explore the potential value of miR‑143 and miR‑145 as biomarkers for predicting HBV‑associated HCC tumorigenesis. In serum, miR‑143/145 were identified to be significantly decreased in patients with HBV‑associated HCC compared with negative control patients, and their associated areas under the ROC curves were calculated at 0.813 and 0.852 (P\u3c0.05), with each having a sensitivity and a specificity close to 0.80. These results indicated that the decreased expression of the miR‑143/145 cluster and their host gene MIR143HG in HBV‑associated HCC tissue was associated with prognosis, and each of these miRNAs may serve as a valuable diagnostic biomarker for predicting HBV‑associated HCC tumorigenesis

    A software memory partition approach for eliminating bank-level interference in multicore systems

    No full text
    Main memory system is a shared resource in modern multicore machines, resulting in serious interference, which causes performance degradation in terms of throughput slowdown and unfairness. Numerous new memory scheduling algorithms have been proposed to address the interference problem. However, these algorithms usually employ complex scheduling logic and need hardware modification to memory controllers, as a result, industrial venders seem to have some hesitation in adopting them. This paper presents a practical software approach to effectively eliminate the interference without hardware modification. The key idea is to modify the OS memory management subsystem to adopt a page-coloring based bank-level partition mechanism (BPM), which allocates specific DRAM banks to specific cores (threads). By using BPM, memory controllers can passively schedule memory requests in a core-cluster (or thread-cluster) way. We implement BPM in Linux 2.6.32.15 kernel and evaluate BPM on 4-core and 8-core real machines by running randomly generated 20 multi-programmed workloads (each contains 4/8 benchmarks) and multi-threaded benchmark. Experimental results show that BPM can improve the overall system throughput by 4.7% on average (up to 8.6%), and reduce the maximum slowdown by 4.5 % on average (up to 15.8%). Moreover, BPM also saves 5.2% of the energy consumption of memory system

    Impact of In-Air Gestures on In-Car Task’s Diver Distraction

    No full text
    As in-vehicle information systems (IVIS) grow increasingly complex, the demand for innovative artificial intelligence-based interaction methods that enhance cybersecurity becomes more crucial. In-air gestures offer a promising solution due to their intuitiveness and individual uniqueness, potentially improving security in human–computer interactions. However, the impact of in-air gestures on driver distraction during in-vehicle tasks and the scarcity of skeleton-based in-air gesture recognition methods in IVIS remain largely unexplored. To address these challenges, we developed a skeleton-based framework specifically tailored for IVIS that recognizes in-air gestures, classifying them as static or dynamic. Our gesture model, tested on the large-scale AUTSL dataset, demonstrates accuracy comparable to state-of-the-art methods and increased efficiency on mobile devices. In comparative experiments between in-air gestures and touch interactions within a driving simulation environment, we established an evaluation system to assess the driver’s attention level during driving. Our findings indicate that in-air gestures provide a more efficient and less distracting interaction solution for IVIS in multi-goal driving environments, significantly improving driving performance by 65%. The proposed framework can serve as a valuable tool for designing future in-air gesture-based interfaces for IVIS, contributing to enhanced cybersecurity

    UBE2D1 RNA Expression Was an Independent Unfavorable Prognostic Indicator in Lung Adenocarcinoma, but Not in Lung Squamous Cell Carcinoma

    No full text
    In this study, we investigated the potential prognostic value of ubiquitin-conjugating enzyme E2D1 (UBE2D1) RNA expression in different histological subtypes of non-small-cell lung cancer (NSCLC). A retrospective study was performed by using molecular, clinicopathological, and survival data in the Cancer Genome Atlas (TCGA)—Lung Cancer. Results showed that both lung adenocarcinoma (LUAD) (N=514) and lung squamous cell carcinoma (LUSC) (N=502) tissues had significantly elevated UBE2D1 RNA expression compared to the normal tissues (p<0.001 and p=0.036, respectively). UBE2D1 RNA expression was significantly higher in LUAD than in LUSC tissues. Increased UBE2D1 RNA expression was independently associated with shorter OS (HR: 1.359, 95% CI: 1.031–1.791, p=0.029) and RFS (HR: 1.842, 95% CI: 1.353–2.508, p<0.001) in LUAD patients, but not in LUSC patients. DNA amplification was common in LUAD patients (88/551, 16.0%) and was associated with significantly upregulated UBE2D1 RNA expression. Based on these findings, we infer that UBE2D1 RNA expression might only serve as an independent prognostic indicator of unfavorable OS and RFS in LUAD, but not in LUSC

    BPM/BPM+

    No full text
    corecore