37 research outputs found

    High-throughput dielectrophoretic cell sorting assisted by cell sliding on scalable electrode tracks made of conducting-PDMS

    Get PDF
    Dielectrophoresis (DEP) as a label-free cell separation approach in microdevices has been extensively investigated for a variety of applications. 3D microelectrodes made of conducting-PDMS inherit the merit of volumetric electrodes for generating influential DEP force throughout the entire channel depth and meanwhile, exploit low-cost fabrication process by soft lithography. However, the configuration of conducting-PDMS electrodes is limited to being embedded in sidewall of flow chamber, which leads to rather low flow rate and difficulties in extension of the flow rate. We previously reported a more effective configuration with 3D interdigitated electrodes made of silicon that assist cell sliding along solid tracks, yet such device requires expensive silicon dry etching and, moreover, the track appears to be patterned with non-straight and wavy outline, which not only hinders the flow rate but also allows cell sliding to occur only along its downstream side. Here we demonstrate low-cost silver-PDMS electrode-track featuring ideally straight outline that induces rather uniform drag to drive smooth cell sliding. Such design achieves live and dead cell separation at flow rate twice as that of silicon tracks with cell loading concentration 10 times higher. It also fully utilizes the track to enable cell sliding on both of the up- and down-stream sides. Notably, we also demonstrate that this track is expandable to be V-shape for more advanced bidirectional cell sliding, which is showcased here by tumor cells separation from lymphocytes at 1.2 mL/h. Such results greatly enhance the throughput as compared to the state-of-art conducting-PDMS based cell separator

    Ceftazidime-avibactam induced renal disorders: past and present

    Get PDF
    With the increasing prevalence of multidrug-resistant Gram-negative bacterial pathogens worldwide, antimicrobial resistance has become a significant public health concern. Ceftazidime-avibactam (CAZ-AVI) exhibited excellent in vitro activity against many carbapenemase-producing pathogens, and was widely used for the treatment of various complicated infections. CAZ-AVI is well tolerated across all dosing regimens, and its associated acute kidney injury (AKI) in phase II/III clinical trials is rare. However, recent real-world studies have demonstrated that CAZ-AVI associated AKI was more frequent in real-world than in phase II and III clinical trials, particularly in patients receiving concomitant nephrotoxic agents, with critically ill patients being at a higher risk. Herein, we reviewed the safety data related to renal impairment of CAZ-AVI, and discussed its pharmacokinetic/pharmacodynamic targets and dosage adjustment in patients with impaired renal function. This review aimed to emphasize the importance for healthcare professionals to be aware of this adverse event of CAZ-AVI and provide practical insights into the dosage optimization in critically ill patients with renal dysfunction

    FIMO: A Challenge Formal Dataset for Automated Theorem Proving

    Full text link
    We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes

    Cardioprotection of Ginkgolide B on Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Regulation of A20-NF-κB Pathway

    Get PDF
    Inflammation urges most of the characteristics of plaques involved in the pathogenesis of myocardial ischemia/reperfusion injury (MI/RI). In addition, inflammatory signaling pathways not only mediate the properties of plaques that precipitate ischemia/reperfusion (I/R) but also influence the clinical consequences of the post-infarction remodeling and heart failure. Here, we studied whether Ginkgolide B (GB), an effective anti-inflammatory monomer, improved MI/RI via suppression of inflammation. Left anterior descending (LAD) coronary artery induced ischemia/reperfusion (I/R) of rats or A20 silencing mice, as well as hypoxia/reoxygenation (H/R) induced damages of primary cultured rat neonatal ventricular myocytes or A20 silencing ventricular myocytes, respectively, served as MI/RI model in vivo and in vitro to discuss the anti-I/R injury properties of GB. We found that GB significantly alleviated the symptoms of MI/RI evidently by reducing infarct size, preventing ultrastructural changes of myocardium, depressing Polymorphonuclears (PMNs) infiltration, lessening histopathological damage and suppressing the excessive inflammation. Further study demonstrated that GB remarkably inhibited NF-κB p65 subunit translocation, IκB-α phosphorylation, IKK-β activity, as well as the downstream inflammatory cytokines and proteins expressions via zinc finger protein A20. In conclusion, GB could alleviate MI/RI-induced inflammatory response through A20-NF-κB signal pathway, which may give us new insights into the preventive strategies for MI/RI disease

    Cardiovascular risk burden, dementia risk and brain structural imaging markers:a study from UK Biobank

    Get PDF
    Background:Cardiovascular risk burden is associated with dementia risk and neurodegeneration-related brain structure, while the role of genetics and incident cardiovascular disease (CVD) remains unclear. Aims:To examine the association of overall cardiovascular risk burden with the risk of major dementia subtypes and volumes of related brain regions in a large sample, and to explore the role of genetics and CVD onset. Methods:A prospective study among 354 654 participants free of CVD and dementia (2006–2010, mean age 56.4 years) was conducted within the UK Biobank, with brain magnetic resonance imaging (MRI) measurement available for 15 104 participants since 2014. CVD risk burden was evaluated by the Framingham General Cardiovascular Risk Score (FGCRS). Dementia diagnosis was ascertained from inpatient and death register data. Results:Over a median 12.0-year follow-up, 3998 all-cause dementia cases were identified. Higher FGCRS was associated with increased all-cause dementia risk after adjusting for demographic, major lifestyle, clinical factors and the polygenic risk score (PRS) of Alzheimer’s disease. Comparing the high versus low tertile of FGCRS, the odds ratios (ORs) and 95% confidence intervals (CIs) were 1.26 (1.12 to 1.41) for all-cause dementia, 1.67 (1.33 to 2.09) for Alzheimer’s disease and 1.53 (1.07 to 2.16) for vascular dementia (all ptrend&lt;0.05). Incident stroke and coronary heart disease accounted for 14% (95% CI: 9% to 21%) of the association between FGCRS and all-cause dementia. Interactions were not detected for FGCRS and PRS on the risk of any dementia subtype. We observed an 83% (95% CI: 47% to 128%) higher all-cause dementia risk comparing the high–high versus low–low FGCRS–PRS category. For brain volumes, higher FGCRS was associated with greater log-transformed white matter hyperintensities, smaller cortical volume and smaller grey matter volume. Conclusions:Our findings suggest that the positive association of cardiovascular risk burden with dementia risk also applies to major dementia subtypes. The association of cardiovascular risk burden with all-cause dementia is largely independent of CVD onset and genetic predisposition to dementia.</p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    High Precision Robust Automatic Alignment Method for Rotating Shaft

    No full text
    corecore