35 research outputs found

    Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice

    Get PDF
    ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42

    Adding power of artificial intelligence to situational awareness of large interconnections dominated by inverter‐based resources

    Get PDF
    Large-scale power systems exhibit more complex dynamics due to the increasing integration of inverter-based resources (IBRs). Therefore, there is an urgent need to enhance the situational awareness capability for better monitoring and control of power grids dominated by IBRs. As a pioneering Wide-Area Measurement System, FNET/GridEye has developed and implemented various advanced applications based on the collected synchrophasor measurements to enhance the situational awareness capability of large-scale power grids. This study provides an overview of the latest progress of FNET/GridEye. The sensors, communication, and data servers are upgraded to handle ultra-high density synchrophasor and point-on-wave data to monitor system dynamics with more details. More importantly, several artificial intelligence (AI)-based advanced applications are introduced, including AI-based inertia estimation, AI-based disturbance size and location estimation, AI-based system stability assessment, and AI-based data authentication

    GKS and UGKS for High-Speed Flows

    No full text
    The gas-kinetic scheme (GKS) and the unified gas-kinetic scheme (UGKS) are numerical methods based on the gas-kinetic theory, which have been widely used in the numerical simulations of high-speed and non-equilibrium flows. Both methods employ a multiscale flux function constructed from the integral solutions of kinetic equations to describe the local evolution process of particles’ free transport and collision. The accumulating effect of particles’ collision during transport process within a time step is used in the construction of the schemes, and the intrinsic simulating flow physics in the schemes depends on the ratio of the particle collision time and the time step, i.e., the so-called cell’s Knudsen number. With the initial distribution function reconstructed from the Chapman–Enskog expansion, the GKS can recover the Navier–Stokes solutions in the continuum regime at a small Knudsen number, and gain multi-dimensional properties by taking into account both normal and tangential flow variations in the flux function. By employing a discrete velocity distribution function, the UGKS can capture highly non-equilibrium physics, and is capable of simulating continuum and rarefied flow in all Knudsen number regimes. For high-speed non-equilibrium flow simulation, the real gas effects should be considered, and the computational efficiency and robustness of the schemes are the great challenges. Therefore, many efforts have been made to improve the validity and reliability of the GKS and UGKS in both the physical modeling and numerical techniques. In this paper, we give a review of the development of the GKS and UGKS in the past decades, such as physical modeling of a diatomic gas with molecular rotation and vibration at high temperature, plasma physics, computational techniques including implicit and multigrid acceleration, memory reduction methods, and wave–particle adaptation

    Uniqueness of system integration scheme of artificial intelligence technology in fractional differential mathematical equation

    No full text
    In order to explore the fractional differential equations in accounting informatization financial software, the author proposes a system for fractional diffusion wave equations and fractional differential equations, two numerical algorithms with higher precision are given, and the amount of computation is reduced at the same time. First, based on the equivalent integral form of the time fractional diffusion wave equation, using the fractional echelon method and the Crank-Nicolson method, for the time fractional diffusion wave equation, a finite difference scheme is designed, this format has second-order accuracy in both the temporal and spatial directions and is computationally stable. Numerical examples verify the accuracy and effectiveness of this format. Then when dealing with the initial value problem of fractional differential equations with Caputo derivative operator, convert it to the equivalent Voltera integral equation system, an initial approximate solution is obtained by a low-order method, derive the residual and error equations, the idea of applying the stepwise correction of spectral delay correction improves the numerical accuracy of the solution, at the same time, the Richard Askey integral equation is used to reduce the amount of calculation. At last, the high precision and effectiveness of the new method are verified by numerical experiments. Experiments show that: Starting from the equivalent integral form of the fractional diffusion wave equation, a second-order finite-difference scheme of the fractional-order diffusive wave equation is constructed, through numerical experiments, it is verified that the scheme has good accuracy and efficiency. In numerical solution, discrete integral equations have better numerical stability than differential equations, therefore, the format also has better stability. When taking different fractional derivative indices a=1.5 and a=1.8, it can be seen that the difference format constructed by the author, in the time direction, has second-order precision, as expected

    A Fast Heuristic Algorithm for Minimizing Congestion in the MPLS Networks

    No full text
    In the multiple protocol label-switched (MPLS) networks, the commodities are transmitted by the label-switched paths (LSPs). For the sake of reducing the total cost and strengthening the central management, the MPLS networks restrict the number of paths that a commodity can use, for maintaining the quality of service (QoS) of the users, the demand of each commodity must be satisfied. Under the above conditions, some links in the network may be too much loaded, affecting the performance of the whole network drastically. For this problem, in [1], we proposed two mathematical models to describe it and a heuristic algorithm which quickly finds transmitting paths for each commodity are also presented. In this paper, we propose a new heuristic algorithm which finds a feasible path set for each commodity, and then select some paths from the path set through a mixed integer linear programming to transmit the demand of each commodity. This strategy reduces the scale of the original problem to a large extent. We test 50 instances and the results show the effectiveness of the new heuristic algorithm

    Biomedical Photoacoustic Imaging Optimization with Deconvolution and EMD Reconstruction

    No full text
    A photoacoustic (PA) signal of an ideal optical absorbing particle is a single N-shape wave. PA signals are a combination of several individual N-shape waves. However, the N-shape wave basis leads to aliasing between adjacent micro-structures, which deteriorates the quality of final PA images. In this paper, we propose an image optimization method by processing raw PA signals with deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent deconvolution kernel, which is measured in advance. EMD is subsequently adopted to further process the PA signals adaptively with two restrictive conditions: positive polarity and spectrum consistency. With this method, signal aliasing is alleviated, and the micro-structures and detail information, previously buried in the reconstructing images, can now be revealed. To validate our proposed method, numerical simulations and phantom studies are implemented, and reconstructed images are used for illustration
    corecore