2 research outputs found

    Directed Self-Assembly of Lamellar Copolymers: Effects of Interfacial Interactions on Domain Shape

    No full text
    The depth-dependent structure of a poly­(styrene-<i>b</i>-methylmethacrylate) (PS-PMMA) line grating (46 nm pitch) was calculated from quantitative analysis of small-angle X-ray scattering profiles. These data demonstrate that domain shapes are significantly deformed near the substrate interface, where the local PS domain shape resembles an hourglass. The bulk equilibrium dimension is recovered near the center of a 64 nm thick film. Simulations based on self-consistent field theory suggest that deformations near the substrate are caused by extensive penetration of the copolymer domains into the underlying substrate coating (a PS-brush). These findings suggest that new coatings for block copolymer directed self-assembly should consider copolymer penetration lengths in addition to tailoring surface energetics. Furthermore, given the resolution and ensemble-averaging features of synchrotron X-ray scattering, we argue that it has the potential to emerge as a “gold-standard” or “benchmark” dimensional metrology and library validation tool for high density, sub-10 nm features

    Determination of the Internal Morphology of Nanostructures Patterned by Directed Self Assembly

    No full text
    The directed self-assembly (DSA) of block copolymers (BCP) is an emerging resolution enhancement tool that can multiply or subdivide the pitch of a lithographically defined chemical or topological pattern and is a resolution enhancement candidate to augment conventional lithography for patterning sub-20 nm features. Continuing the development of this technology will require an improved understanding of the polymer physics involved as well as experimental confirmation of the simulations used to guide the design process. Both of these endeavors would be greatly facilitated by a metrology, which is capable of probing the internal morphology of a DSA film. We have developed a new measurement technique, resonant critical-dimension small-angle X-ray scattering (res-CDSAXS), to evaluate the 3D buried features inside the film. This is an X-ray scattering measurement where the sample angle is varied to probe the 3D structure of the film, while resonant soft X-rays are used to enhance the scattering contrast. By measuring the same sample with both res-CDSAXS and traditional CDSAXS (with hard X-rays), we are able to demonstrate the dramatic improvement in scattering obtained through the use of resonant soft X-rays. Analysis of the reciprocal space map constructed from the res-CDSAXS measurements allowed us to reconstruct the complex buried features in DSA BCP films. We studied a series of DSA BCP films with varying template widths, and the internal morphologies for these samples were compared to the results of single chain in mean-field simulations. The measurements revealed a range of morphologies that occur with changing template width, including results that suggest the presence of mixed morphologies composed of both whole and necking lamella. The development of res-CDSAXS will enable a better understanding of the fundamental physics behind the formation of buried features in DSA BCP films
    corecore