30 research outputs found

    Editorial: Toxic effects and ecological risk assessment of typical pollutants in aquatic environments

    Get PDF
    Aquatic pollution caused by anthropogenic activities has been one of the major environmental problems worldwide for decades. Rapid industrialization and urbanization is releasing “traditional” and emerging pollutants into waters in unprecedented quantities and diversity, ultimately endangering biodiversity and human health. Meanwhile, the management and control of risks from chemical pollutants, with varying scientific composition, stringency, and efficacy, are being practiced in different countries and regions.info:eu-repo/semantics/publishedVersio

    Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system

    Get PDF
    Interest in the risks posed by trace concentrations of pharmaceuticals and personal care products (PPCPs) in surface waters is increasing, particularly with regard to potential effects of long-term, low-dose exposures of aquatic organisms. In most cases, the actual studies on PPCPs were risk assessments at screening-level, and accurate estimates were scarce. In this study, exposure and ecotoxicity data of 50 PPCPs were collected based on our previous studies, and a multiple-level environmental risk assessment was performed. The 50 selected PPCPs are likely to be frequently detected in surface waters of China, with concentrations ranging from the ng L−1 to the low-g L−1, and the risk quotients based on median concentrations ranged from 2046 for nonylphenol to 0 for phantolide. A semi-probabilistic approach screened 33 PPCPs that posed potential risks to aquatic organisms, among which 15 chemicals (nonylphenol, sulfamethoxazole, di (2-ethylhexyl) phthalate, 17β-ethynyl estradiol, caffeine, tetracycline, 17β-estradiol, estrone, dibutyl phthalate, ibuprofen, carbamazepine, tonalide, galaxolide, triclosan, and bisphenol A) were categorized as priority compounds according to an optimized risk assessment, and then the refined probabilistic risk assessment indicated 12 of them posed low to high risk to aquatic ecosystem, with the maximum risk products ranged from 1.54% to 17.38%. Based on these results, we propose that the optimized risk assessment was appropriate for screening priority contaminants at national scale, and when a more accurate estimation is required, the refined probability risk assessment is useful. The methodology and process might provide reference for other research of chemical evaluation and management for rivers, lakes, and sea waters

    Hardness-Dependent Water Quality Criteria for Protection of Freshwater Aquatic Organisms for Silver in China

    No full text
    Silver is toxic to freshwater aquatic organisms and aquatic ecosystems, and it is necessary to develop regional water quality criteria (WQC) for silver to protect the freshwater aquatic organisms in China. The toxicity database of silver for freshwater aquatic organisms involved 121 acute toxicity values for 35 species (6 phyla and 27 families) and 15 chronic toxicity values for 4 species (2 phyla and 4 families). Teleost fish showed the most sensitivity to silver after both short-term and long-term exposure. Significant correlations between the natural logarithms of hardness and the natural logarithms of acute silver toxicity were found for Daphnia magna, Oncorhynchus mykiss, and Pimephales promelas. The criterion maximum concentration (CMC) was calculated by the species sensitivity distribution method with sigmoid as the best fitting model (Adj R2 0.9797), and the criterion continuous concentration (CCC) was obtained by the acute-to-chronic ratio method. The CMC and CCC of silver were e1.58ln(HCaCO3)−8.68, and e1.58ln(HCaCO3)−10.28 respectively, in China, with water hardness (HCaCO3, mg/L) as an independent variable. This research can provide a basis and reference for the management of silver to protect freshwater aquatic organisms in China

    Freshwater Water-Quality Criteria for Chloride and Guidance for the Revision of the Water-Quality Standard in China

    No full text
    The chloride in water frequently exceeds the standard; directly quoting foreign water-quality criteria (WQC) or standards will inevitably reduce the scientific value of the water-quality standard (WQS) in China. Additionally, this may lead to the under- or overprotection of water bodies. This study summarized the sources, distribution, pollution status, and hazards of chloride in China’s water bodies. Additionally, we compared and analyzed the basis for setting WQS limits for chloride in China; we systematically analyzed the basis for setting the WQC for chloride in foreign countries, especially the United States. Finally, we collected and screened data on the toxicity of chloride to aquatic organisms; we also used the species sensitivity distribution (SSD) method to derive the WQC value for chloride, which is 187.5 mg·L−1. We put forward a recommended value for freshwater WQS for chloride in China: less than 200 mg·L−1. The study of a freshwater WQC for chloride is not only a key point of environmental research, but also an urgent demand to ensure water ecological protection in China. The results of this study are of great significance for the environmental management of chloride, protection of aquatic organisms, and risk assessment, especially for the revision of WQSs

    Freshwater Water-Quality Criteria for Chloride and Guidance for the Revision of the Water-Quality Standard in China

    No full text
    The chloride in water frequently exceeds the standard; directly quoting foreign water-quality criteria (WQC) or standards will inevitably reduce the scientific value of the water-quality standard (WQS) in China. Additionally, this may lead to the under- or overprotection of water bodies. This study summarized the sources, distribution, pollution status, and hazards of chloride in China’s water bodies. Additionally, we compared and analyzed the basis for setting WQS limits for chloride in China; we systematically analyzed the basis for setting the WQC for chloride in foreign countries, especially the United States. Finally, we collected and screened data on the toxicity of chloride to aquatic organisms; we also used the species sensitivity distribution (SSD) method to derive the WQC value for chloride, which is 187.5 mg·L−1. We put forward a recommended value for freshwater WQS for chloride in China: less than 200 mg·L−1. The study of a freshwater WQC for chloride is not only a key point of environmental research, but also an urgent demand to ensure water ecological protection in China. The results of this study are of great significance for the environmental management of chloride, protection of aquatic organisms, and risk assessment, especially for the revision of WQSs
    corecore