34 research outputs found

    Quasi-4-dimension ionospheric modeling and its application in PPP

    Get PDF
    The version of record of this article, first published in Satellite Navigation, is available online at Publisher’s website: http://dx.doi.org/10.1186/s43020-022-00085-zIonospheric delay modeling is not only important for GNSS based space weather study and monitoring, but also an efficient tool to overcome the long convergence time of PPP. In this study, a novel model, denoted as Q4DIM (Quasi-4-dimension ionospheric modeling) is proposed for wide-area high precision ionospheric delay correction. In Q4DIM, the LOS (line of sight) ionospheric delay from a GNSS station network is divided into different clusters according to not only latitude and longitude, but also elevation and azimuth. Both GIM (global ionosphere map) and SID (slant ionospheric delay) that traditionally used for wide-area and regional ionospheric delay modeling, respectively, can be regarded as special case of Q4DIM by defining proper grids in latitude, longitude, elevation and azimuth. Thus, Q4DIM presents a resilient model that is capable for both wide-area coverage and high precision. Then four different sets of clusters are defined to illustrate the properties of Q4DIM based on 200 EPN stations. The results suggested that Q4DIM is compatible with the widely acknowledged GIM products. Moreover, it is proved that by inducting the elevation and azimuth angle dependent residuals, the precision of the 2-dimensional GIM-like model, i.e., Q4DIM-2D, is improved from around 1.5 TECU to better than 0.5 TECU. In addition, by treating Q4DIM as a 4-dimensional matrix in latitude, longitude, elevation and azimuth, its sparsity is less than 5%, thus guarantees its feasibility in a bandwidth-sensitive applications, e.g., satellite-based PPP-RTK service. Finally, the advantage of Q4DIM in single frequency PPP over the 2-dimensional models is demonstrated with one month’s data from 30 EPN stations.Peer ReviewedPostprint (published version

    LMSanitator: Defending Prompt-Tuning Against Task-Agnostic Backdoors

    Full text link
    Prompt-tuning has emerged as an attractive paradigm for deploying large-scale language models due to its strong downstream task performance and efficient multitask serving ability. Despite its wide adoption, we empirically show that prompt-tuning is vulnerable to downstream task-agnostic backdoors, which reside in the pretrained models and can affect arbitrary downstream tasks. The state-of-the-art backdoor detection approaches cannot defend against task-agnostic backdoors since they hardly converge in reversing the backdoor triggers. To address this issue, we propose LMSanitator, a novel approach for detecting and removing task-agnostic backdoors on Transformer models. Instead of directly inverting the triggers, LMSanitator aims to invert the predefined attack vectors (pretrained models' output when the input is embedded with triggers) of the task-agnostic backdoors, which achieves much better convergence performance and backdoor detection accuracy. LMSanitator further leverages prompt-tuning's property of freezing the pretrained model to perform accurate and fast output monitoring and input purging during the inference phase. Extensive experiments on multiple language models and NLP tasks illustrate the effectiveness of LMSanitator. For instance, LMSanitator achieves 92.8% backdoor detection accuracy on 960 models and decreases the attack success rate to less than 1% in most scenarios.Comment: To Appear in the Network and Distributed System Security (NDSS) Symposium 2024, 26 February - 1 March 2024, San Diego, CA, USA; typos correcte

    Dietary sodium/potassium intake and cognitive impairment in older patients with hypertension: Data from NHANES 2011–2014

    No full text
    Abstract This study aimed to assess the relationship between dietary sodium/potassium intake and cognition in elderly individuals with hypertension. We designed a cross‐sectional study based on the 2011–2014 National Health and Nutrition Examination Survey (NHANES) 2011–2014. A multivariable‐logistic regression analysis was performed to analyze the relationship between sodium/potassium intake and cognitive impairment. Restricted cubic spline (RCS) based on regression analysis to assess the nonlinear dose‐response relationship between dietary sodium intake and cognitive performance. Out of the 2276 participants included in this study, 1670 patients had hypertension. Compared with the lowest quartile of dietary sodium intake, the lowest weighted odds ratio of cognitive impairment in DSST was observed in Q4 (OR = 0.45, 0.29–0.70), and a similar trend was observed in AFT (OR = 0.34, 0.18–0.65). After adjusting the covariates, the lowest weighted multivariable‐adjusted OR of cognitive impairment in DSST were also observed in Q4 (OR = 0.47, 0.26‐0.84) compared with the lowest quartile of dietary sodium intake. The RCS results showed that dietary sodium intake was U‐shaped and associated with the risk of cognitive impairment in the DSST (Pnon–linearity = 0.0067). In addition, no significant association was observed between dietary potassium intake and different dimensions of cognitive performance. In conclusion, excessively high and low low dietary sodium were associated with impairment of specific processing speed, sustained attention, and working memory for elderly patients with hypertension in the United States. However, no association was observed between dietary potassium intake and cognition

    Experimental Realization of a Skyrmion Circulator

    No full text
    Magnetic skyrmions are mobile topological spin textures that can be manipulated by different means. Their applications have been frequently discussed in the context of information carriers for racetrack memory devices, which on the other hand, exhibit a skyrmion Hall effect as a result of the nontrivial real-space topology. While the skyrmion Hall effect is believed to be detrimental for constructing racetrack devices, we show here that it can be implemented for realizing a three-terminal skyrmion circulator. In analogy to the microwave circulator, nonreciprocal transportation and circulation of skyrmions are studied both numerically and experimentally. In particular, successful control of the circulating direction of being either clockwise or counterclockwise is demonstrated, simply by changing the sign of the topological charge. Our studies suggest that the topological property of skyrmions can be incorporated for enabling novel spintronic functionalities; the skyrmion circulator is just one example

    The DmeRF System Is Involved in Maintaining Cobalt Homeostasis in <i>Vibrio parahaemolyticus</i>

    No full text
    Although cobalt (Co) is indispensable for life, it is toxic to cells when accumulated in excess. The DmeRF system is a well-characterized metal-response system that contributes to Co and nickel resistance in certain bacterial species. The Vibrio parahaemolyticus RIMD 2210633 genome also harbors a dmeRF operon that encodes a multiple antibiotic resistance regulator family transcriptional regulator and a cation diffusion facilitator family protein. Quantitative real-time PCR, growth curves analysis, inductively coupled plasma-mass spectrometry, β-galactosidase activity assays, electrophoretic mobility shift assays, and a mouse infection experiment were performed to characterize the function of the DmeRF system in V. parahaemolyticus. Zinc, copper, and Co significantly increase dmeF expression, with Co inducing the greatest increase. DmeF promotes V. parahaemolyticus growth under high-Co conditions. Additionally, increased accumulation of cellular Co in the ΔdmeF mutant indicates that DmeF is potentially involved in Co efflux. Moreover, DmeR represses the dmeRF operon by binding directly to its promoter in the absence of Co. Finally, the DmeRF system was not required for V. parahaemolyticus virulence in mice. Collectively, our data indicate that the DmeRF system is involved in maintaining Co homeostasis in V. parahaemolyticus and DmeR functioning as a repressor of the operon
    corecore