35 research outputs found

    GPX8 regulates pan-apoptosis in gliomas to promote microglial migration and mediate immunotherapy responses

    Get PDF
    IntroductionGliomas have emerged as the predominant brain tumor type in recent decades, yet the exploration of non-apoptotic cell death regulated by the pan-optosome complex, known as pan-apoptosis, remains largely unexplored in this context. This study aims to illuminate the molecular properties of pan-apoptosis-related genes in glioma patients, classifying them and developing a signature using machine learning techniques.MethodsThe prognostic significance, mutation features, immunological characteristics, and pharmaceutical prediction performance of this signature were comprehensively investigated. Furthermore, GPX8, a gene of interest, was extensively examined for its prognostic value, immunological characteristics, medication prediction performance, and immunotherapy prediction potential. ResultsExperimental techniques such as CCK-8, Transwell, and EdU investigations revealed that GPX8 acts as a tumor accelerator in gliomas. At the single-cell RNA sequencing level, GPX8 appeared to facilitate cell contact between tumor cells and macrophages, potentially enhancing microglial migration. ConclusionsThe incorporation of pan-apoptosis-related features shows promising potential for clinical applications in predicting tumor progression and advancing immunotherapeutic strategies. However, further in vitro and in vivo investigations are necessary to validate the tumorigenic and immunogenic processes associated with GPX8 in gliomas

    Anoectochilus zhongshanensis (Orchidaceae), a new species from Guangxi, China

    No full text
    A new species of Anoectochilus (Orchidaceae) from Guangxi, China, A. zhongshanensis, is described here, which was identified based on phylogenetic studies adopting combined plastid markers (rbcL-matK-trnL-F), morphological observation and chemical analysis. Molecular phylogenetic results support the systematic status of A. zhongshanensis as a new species in Anoectochilus genus. Morphologically, this new species is similar to A. zhejiangensis and A. malipoensis, but differs by its characteristic labellum and column, including the hastate or scalpel-shaped lobes of epichile, forward curved and pinnately divided cristate lobes at both sides of the mesochile and inverted triangle column wings. Furthermore, HPLC-ELSD analysis of these three species revealed the interesting chemotaxonomic difference that the principle and characteristic lactone glycoside in this new species was kinsenoside, rather than its diastereoisomer, goodyeroside A, a major glycoside in A. zhejiangensis and A. malipoensis

    Effect of Thermophilic Microbial Agents on Antibiotic Resistance Genes and Microbial Communities during Co-Composting of Pig Manure and Tea Stalks

    No full text
    Antibiotic resistance caused by antibiotic resistance genes (ARGs) threatens human health. ARGs in animal manure can be degraded by composting. This study explored the changes in ARGs and microbial communities during co-composting of pig manure and tea stalks with (T) thermophilic microbial agents, including Geobacillus toebii ZF1 and Geobacillus sp. ZF2 for 15 days in a 4 L vacuum flask. Composting without thermophilic microbial agents served as control (CK). The results showed that the compost temperature of group T peaked at 72.1 °C and maintained above 70 °C for 4 days. The maximum temperature of group CK was 64.0 °C. The seed germination index showed that group T had reached maturity on day 9, while group CK reached maturity on day 15. The dominant bacteria in group CK were Bacillus. In group T, the dominant bacteria changed from Bacillus and Corynebacterium to Geobacillus. Compared with that of group CK, group T increased the removal of cmx, baeS and TaeA by 24.6%, 18.6% and 12.1%, respectively. Group T promoted and inhibited the removal of arlR and novA, respectively (p Dietzia, Clostridium and Corynebacterium (p cmx and baeS. These results showed that thermophilic microbial agents could accelerate the maturation of pig manure and tea stalks, change microbial communities and promote the removal of ARGs. It is of great significance to reduce the spread of ARGs and, in turn, human health risks

    Identification of a two metastasis-related prognostic signature in the process of predicting the survival of laryngeal squamous cell carcinoma

    No full text
    Abstract Metastasis is a major cause of treatment failure and poor outcomes in cancer patients. The data used in the current study was downloaded from TCGA and GEO databases. Differentially expressed metastasis-related genes were identified and the biological functions were implemented. Kaplan–Meier analysis univariate, and, multivariate Cox regression analyses were performed to identify robust prognostic biomarkers, followed by construction of the risk model and nomogram. Gene set enrichment analysis was performed to identify pathways enriched in low- and high-risk groups. POLR2J3 and MYH11 were treated as prognostic biomarkers in LSCC and the risk model was constructed. Receiver operating characteristic curves revealed the good performance of the risk model. A nomogram with high accuracy was constructed, as evidenced by calibration and decision curves. Moreover, we found that the expressions of POLR2J3 and MYH11 was significantly higher in metastasis tissues compared with those in non-metastasis tissues by RT-qPCR and IHC. Our study identified novel metastasis-related prognostic biomarkers in LSCC and constructed a unique nomogram for predicting the prognosis of LSCC patients. Moreover, we explored the related mechanisms of metastasis-related genes in regulating LSCC

    A Kinesin Vdkin2 Required for Vacuole Formation, Mycelium Growth, and Penetration Structure Formation of <em>Verticillium dahliae</em>

    No full text
    The soil-borne vascular fungus Verticillium dahliae infects hundreds of dicotyledonous plants, causing severe wilt diseases. During the initial colonization, V. dahliae develops a penetration peg to enable infection of cotton roots. In some phytopathogenic fungi, vacuoles play a critical role in normal formation of the infection structure. Kinesin 2 protein is associated with vacuole formation in Ustilago maydis. To identify the function of vacuoles in the V. dahliae infection structure, we identified VdKin2, an ortholog of kinesin 2, in V. dahliae and investigated its function through gene knockout. VdKin2 mutants showed severe defects in virulence and were suppressed during initial infection and root colonization based on observation of green fluorescent protein-labeled V. dahliae. We also found that deletion of VdKin2 compromised penetration peg formation and the derived septin neck. Disruption strains were viable and showed normal microsclerotia formation, whereas mycelium growth and conidial production were reduced, with shorter and more branched hyphae. Furthermore, the VdKin2 mutant, unlike wild-type V. dahliae, lacked a large basal vacuole, accompanied by a failure to generate concentrated lipid droplets. Taken together, VdKin2 regulates vacuole formation by V. dahliae, which is required for conidiation, mycelium growth, and penetration structure formation during initial plant root infection

    UHPLC-HRMSn Analysis Reveals the Dynamic Metabonomic Responses of Salvia miltiorrhiza Hairy Roots to Polysaccharide Fraction from Trichoderma atroviride

    No full text
    We have previously reported that Trichoderma atroviride, an endophytic fungus isolated from S. miltiorrhiza, promotes S. miltiorrhiza hairy root growth and significantly stimulates the biosynthesis of tanshinones specifically the polysaccharide fraction (PSF). However, this study only focused exclusively on six metabolites whilst ignoring changes to the whole metabolite composition of the S. miltiorrhiza hairy roots. In the present study, the dynamic metabonomic responses of S. miltiorrhiza hairy roots were investigated using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMSn). UHPLC-HRMS typical total ions chromatograms (TICs) of PSF-treated hairy root samples were different from the control. Moreover, the results of principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA) indicated that PSF-treated samples were significantly different from the control. Through the analysis of PLS-DA, a total of 114 and 99 differential metabolites were found from the positive and negative models respectively and a total of 33 differential metabolites were identified. Thus, S. miltiorrhiza hairy roots had been induced to regulate the metabolic profiling in response to PSF and the changes of the metabolic profiling contributed to promoting the biosynthesis of tanshinones notably whilst the biosynthesis of phenolic acids were slightly inhibited
    corecore