72 research outputs found

    User-Centered Software Design: User Interface Redesign for Blockly–Electron, Artificial Intelligence Educational Software for Primary and Secondary Schools

    Get PDF
    According to the 2021 and 2022 Horizon Report, AI is emerging in all areas of education, in various forms of educational aids with various applications, and is carving out a similarly ubiquitous presence across campuses and classrooms. This study explores a user-centered approach used in the design of the AI educational software by taking the redesign of the user interface of AI educational software Blockly–Electron as an example. Moreover, by analyzing the relationship between the four variables of software usability, the abstract usability is further certified so as to provide ideas for future improvements to the usability of AI educational software. User-centered design methods and attribution analysis are the main research methods used in this study. The user-centered approach was structured around four phases. Overall, seventy-three middle school students and five teachers participated in the study. The USE scale will be used to measure the usability of Blockly–Electron. Five design deliverables and an attribution model were created and discovered in the linear relationship between Ease of Learning, Ease of Use, Usefulness and Satisfaction, and Ease of use as a mediator variable, which is significantly different from the results of previous regression analysis for the USE scale. This study provides a structural user-centered design methodology with quantitative research. The deliverables and the attribution model can be used in the AI educational software design. Furthermore, this study found that usefulness and ease of learning significantly affect the ease of use, and ease of use significantly affects satisfaction. Based on this, the usability will be further concretized to facilitate the production of software with greater usability

    Egress of HSV-1 capsid requires the interaction of VP26 and a cellular tetraspanin membrane protein

    Get PDF
    HSV-1 viral capsid maturation and egress from the nucleus constitutes a self-controlled process of interactions between host cytoplasmic membrane proteins and viral capsid proteins. In this study, a member of the tetraspanin superfamily, CTMP-7, was shown to physically interact with HSV-1 protein VP26, and the VP26-CTMP-7 complex was detected both in vivo and in vitro. The interaction of VP26 with CTMP-7 plays an essential role in normal HSV-1 replication. Additionally, analysis of a recombinant virus HSV-1-UG showed that mutating VP26 resulted in a decreased viral replication rate and in aggregation of viral mutant capsids in the nucleus. Together, our data support the notion that biological events mediated by a VP26 - CTMP-7 interaction aid in viral capsid enveloping and egress from the cell during the HSV-1 infectious process

    Effect of symbiotic fungi-Armillaria gallica on the yield of Gastrodia elata Bl. and insight into the response of soil microbial community

    Get PDF
    Armillaria members play important roles in the nutrient supply and growth modulation of Gastrodia elata Bl., and they will undergo severe competition with native soil organisms before colonization and become symbiotic with G. elata. Unraveling the response of soil microbial organisms to symbiotic fungi will open up new avenues to illustrate the biological mechanisms driving G. elata’s benefit from Armillaria. For this purpose, Armillaria strains from four main G. elata production areas in China were collected, identified, and co-planted with G. elata in Guizhou Province. The result of the phylogenetic tree indicated that the four Armillaria strains shared the shortest clade with Armillaria gallica. The yields of G. elata were compared to uncover the potential role of these A. gallica strains. Soil microbial DNA was extracted and sequenced using Illumina sequencing of 16S and ITS rRNA gene amplicons to decipher the changes of soil bacterial and fungal communities arising from A. gallica strains. The yield of G. elata symbiosis with the YN strain (A. gallica collected from Yunnan) was four times higher than that of the GZ strain (A. gallica collected from Guizhou) and nearly two times higher than that of the AH and SX strains (A. gallica collected from Shanxi and Anhui). We found that the GZ strain induced changes in the bacterial community, while the YN strain mainly caused changes in the fungal community. Similar patterns were identified in non-metric multidimensional scaling analysis, in which the GZ strain greatly separated from others in bacterial structure, while the YN strain caused significant separation from other strains in fungal structure. This current study revealed the assembly and response of the soil microbial community to A. gallica strains and suggested that exotic strains of A. gallica might be helpful in improving the yield of G. elata by inducing changes in the soil fungal community

    Cytoplasmic Localization Isoform of Cyclin Y Enhanced the Metastatic Ability of Lung Cancer via Regulating Tropomyosin 4

    Get PDF
    Cyclin Y (CCNY) is a novel cyclin and highly conserved in metazoan species. Previous studies from our and other laboratory indicate that CCNY play a crucial role in tumor progression. There are two CCNY isoform which has different subcellular distributions, with cytoplasmic isoform (CCNYc) and membrane distribution isoform (CCNYm). However, the expression and function of CCNY isoforms is still unclear. We firstly found CCNYc was expressed in natural lung cancer tissue and cells through the subcellular distribution. Co-IP and immunofluorescence showed that both CCNYm and CCNYc could interact with PFTK1. Further studies illustrated that CCNYc but not CCNYm enhanced cell migration and invasion activity both in vivo and vitro. The function of CCNYc could be inhibited by suppression of PFTK1 expression. In addition, our data indicated that tropomyosin 4 (TPM4), a kind of actin-binding proteins, was down-regulated by suppression of CCNY. F-actin assembly could be controlled by CCNYc as well as PFTK1 and TPM4. As a result, CCNY was mainly expressed in lung cancer. CCNYc could promote cell motility and invasion. It indicated that CCNYc/PFTK1 complex could promote cell metastasis by regulating the formation of F-actin via TPM4

    Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection

    Get PDF
    AbstractData from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the mechanisms of EV71 pathogenesis. Our work uses neonatal rhesus monkeys to investigate a possible model of EV71 pathogenesis and concludes that this model could be applied to provide objective indicators which include clinical manifestations, virus dynamic distribution and pathological changes for observation and evaluation in interpreting the complete process of EV71 infection. This induced systemic infection and other collected indicators in neonatal monkeys could be repeated; the transmission appears to involve infecting new monkeys by contact with feces of infected animals. All data presented suggest that the neonatal rhesus monkey model could shed light on EV71 infection process and pathogenesis

    Longitudinal Gut Bacterial Colonization and Its Influencing Factors of Low Birth Weight Infants During the First 3 Months of Life

    Get PDF
    Establishment of low birth weight (LBW) infant gut microbiota may have lifelong implications for the health of individuals. However, no longitudinal cohort studies have been conducted to characterize the gut microbial profiles of LBW infants and their influencing factors. Our objective was to understand how the gut bacterial community structure of LBW and normal birth weight (NBW) infants varies across the first 3 months of life and assess the influencing factors. In this observational cohort study, gut bacterial composition was identified with sequencing of the 16S rRNA gene in fecal samples of 69 LBW infants and 65 NBW controls at 0 day, 3 days, 2 weeks, 6 weeks, and 3 months (defined as stages 1–5) after birth. Alpha-diversity of both groups displayed a decreasing trend followed by slight variations. There were significant differences on the Shannon index of the two groups at stages 1 to 3 (P = 0.041, P = 0.032, and P = 0.014, respectively). The microbiota community structure of LBW infants were significantly different from NBW infants throughout the 3 months (all P < 0.05) but not at stage 2 (P = 0.054). There was a significant increase in abundance in Firmicutes while a decrease in Proteobacteria, and at genus level the abundance of Enterococcus, Klebsiella, and Streptococcus increased while it decreased for Haemophilus in LBW group. Birth weight was the main factor explaining the observed variation at all stages, except at stage 2. Delivery mode (4.78%) and antibiotic usage (3.50%) contributed to explain the observed variation at stage 3, and pregestational BMI (4.61%) partially explained the observed variation at stage 4. In conclusion, gut microbial communities differed in NBW and LBW infants from birth to 3 months of life, and were affected by birth weight, delivery mode, antibiotic treatment, and pregestational BMI

    Conditional Maximum Likelihood of Three-Phase Phasor Estimation for μPMU in Active Distribution Networks

    No full text
    Micro phasor measurement units (μPMU) installed in active distribution networks are very useful for improving observability by acquiring system real-time data. However, three-phase imbalance and harmonic power flows adversely impact the accuracy of synchronous measurements, which implies the importance of phasor estimation errors. This paper proposes a new phasor estimation algorithm for μPMU in active distribution networks that uses a conditional maximum likelihood (CML) estimation method. Firstly, the signal model of three-phase, three-wire and four-wire imbalance systems is established. Then, the probability distributions of the magnitude and phase angles are derived from the geometric characteristics of the CML method by solving the geometric equation. Simulation results show that the proposed CML based method is effective for estimating phasor and impedance models of active distribution networks by using μPMU measurement data

    Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus.

    No full text
    Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW) data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq), was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA). A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001) might be interesting candidate genes that are highly related to seed weight

    Experimental Study and GRNN Modeling of Shrinkage Characteristics for Wax Patterns of Gas Turbine Blades Considering the Influence of Complex Structures

    No full text
    With the continuous increase in power demand in aerospace, shipping, electricity, and other industries, a series of manufacturing requirements such as high precision, complex structure, and thin wall have been put forward for gas turbines. Gas turbine blades are the key parts of the gas turbine. Their manufacturing accuracy directly affects the fuel economy of the gas turbine. Thus, how to improve the manufacturing accuracy of gas turbine blades has always been a hot research topic. In this study, we perform a quantitative study on the correlation between process parameters and the overall wax pattern shrinkage of gas turbine blades in the wax injection process. A prediction model based on a generalized regression neural network (GRNN) is developed with the newly defined cross-sectional features consisting of area, area ratio, and some discrete point deviations. In the qualitative analysis of the cross-sectional features, it is concluded that the highest accuracy of the wax pattern is obtained for the fourth group of experiments, which corresponds to a holding pressure of 18 bars, a holding time of 180 s, and an injection temperature of 62 °C. The prediction model is trained and tested based on small experimental data, resulting in an average RE of 1.5% for the area, an average RE of 0.58% for the area ratio, and a maximum MSE of less than 0.06  mm2 for discrete point deviations. Experiments show that the GRNN prediction model constructed in this study is relatively accurate, which means that the shrinkage of the remaining major investment casting procedures can also be modeled and controlled separately to obtain turbine blades with higher accuracy
    • …
    corecore