88 research outputs found

    Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rice black-streaked dwarf virus </it>(RBSDV), a member of the genus <it>Fijivirus </it>within the family <it>Reoviridae</it>, can infect several graminaceous plant species including rice, maize and wheat, and is transmitted by planthoppers. Although several RBSDV proteins have been studied in detail, functions of the nonstructural protein P6 are still largely unknown.</p> <p>Results</p> <p>In the current study, we employed yeast two-hybrid assays, bimolecular fluorescence complementation and subcellular localization experiments to show that P6 can self-interact to form punctate, cytoplasmic viroplasm-like structures (VLS) when expressed alone in plant cells. The region from residues 395 to 659 is necessary for P6 self-interaction, whereas two polypeptides (residues 580-620 and 615-655) are involved in the subcellular localization of P6. Furthermore, P6 strongly interacts with the viroplasm-associated protein P9-1 and recruits P9-1 to localize in VLS. The P6 395-659 region is also important for the P6-P9-1 interaction, and deleting any region of P9-1 abolishes this heterologous interaction.</p> <p>Conclusions</p> <p>RBSDV P6 protein has an intrinsic ability to self-interact and forms VLS without other RBSDV proteins or RNAs. P6 recruits P9-1 to VLS by direct protein-protein interaction. This is the first report on the functionality of RBSDV P6 protein. P6 may be involved in the process of viroplasm nucleation and virus morphogenesis.</p

    Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots.

    Get PDF
    The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions

    Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana

    Get PDF
    Abstract Background Beet Necrotic Yellow Vein virus (BNYVV) is a member of the genus Benyvirus causing a worldwide sugar beet disease rhizomania. BNYVV contains four or five plus-sense single stranded RNAs. In altered selective conditions, multipartite RNA viruses of plant are prone to undergoing internal deletions, thus turning into Defective RNAs (D RNAs). Although several D RNAs have been reported in BNYVV infection, the spontaneous internal deletion mutants responsible for severe symptom in systemic host Nicotiana benthamiana (N. benthamiana) are not described so far. Results Systemic host N. benthamiana was inoculated by Chinese BNYVV isolates. RT-PCR and Northern blot showed that the D RNAs forms of BNYVV RNA3 were present in the systemic infection of the N. benthamiana. Three distinct D-RNA3s, named as D-RNA 3α, D-RNA 3β and D-RNA 3γ, were made into infectious clones. When inoculated on the N. benthamiana, the in vitro transcripts of D forms exhibited more stable than that of wild-type RNA3 in systemic movement. Among the detected mutant, the p25 protein frame-shift mutant (D-RNA3α) induced obvious necrotic lesions on Tetragonia.expansa (T. expansa) and pronounced systemic symptom on the N. benthamiana. The D-RNA3α was further mutated artificially to pre-terminate the downstream N protein, leading to the abolishment of the pathogenicity, indicating the N protein was responsible for the necrotic symptom. Conclusion Our studies demonstrated the internal deletion mutants of BNYVV-RNA3 were spontaneously generated in the systemic infection on N. benthamiana. The internal deletions didn't affect the efficient replication of D-RNA3s, instead by improving the stability and pathogenicity of RNA3 in the systemic host N. benthamiana. Besides, our results also suggested the downstream N protein of RNA3, but not the upstream p25 protein, may play an important role in the systemic infection on N. benthamiana

    A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

    Get PDF
    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies

    Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell.

    Get PDF
    Cell transplantation has been proved the promising therapeutic effects on intervertebral disc degeneration (IVDD). However, the increased levels of reactive oxygen species (ROS) in the degenerated region will impede the efficiency of human adipose-derived stem cells (human ADSCs) transplantation therapy. It inhibits human ADSCs proliferation, and increases human ADSCs apoptosis. Herein, we firstly devised a novel amphiphilic copolymer PEG-PAPO, which could self-assemble into a nanosized micelle and load lipophilic kartogenin (KGN), as a single complex (PAKM). It was an injectable esterase-responsive micelle, and showed controlled release ability of KGN and apocynin (APO). Oxidative stimulation promoted the esterase activity in human ADSCs, which accelerate degradation of esterase-responsive micelle. Compared its monomer, the PAKM micelle possessed better bioactivities, which were attributed to their synergistic effect. It enhanced the viability, autophagic activation (P62, LC3 II), ECM-related transcription factor (SOX9), and ECM (Collagen II, Aggrecan) maintenance in human ADSCs. Furthermore, it is demonstrated that the injection of PAKM with human ADSCs yielded higher disc height and water content in rats. Therefore, PAKM micelles perform promoting cell survival and differentiation effects, and may be a potential therapeutic agent for IVDD

    Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR.

    Get PDF
    Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions

    Characterization of the Mycovirome from the Plant-Pathogenic Fungus Cercospora beticola

    No full text
    Cercospora leaf spot (CLS) caused by Cercospora beticola is a devastating foliar disease of sugar beet (Beta vulgaris), resulting in high yield losses worldwide. Mycoviruses are widespread fungi viruses and can be used as a potential biocontrol agent for fugal disease management. To determine the presence of mycoviruses in C. beticola, high-throughput sequencing analysis was used to determine the diversity of mycoviruses in 139 C. beticola isolates collected from major sugar beet production areas in China. The high-throughput sequencing reads were assembled and searched against the NCBI database using BLASTn and BLASTx. The results showed that the obtained 93 contigs were derived from eight novel mycoviruses, which were grouped into 3 distinct lineages, belonging to the families Hypoviridae, Narnaviridae and Botourmiaviridae, as well as some unclassified (−)ssRNA viruses in the order Bunyavirales and Mononegavirales. To the best of our knowledge, this is the first identification of highly diverse mycoviruses in C. beticola. The novel mycoviruses explored in this study will provide new viral materials to biocontrol Cercospora diseases. Future studies of these mycoviruses will aim to assess the roles of each mycovirus in biological function of C. beticola in the future

    Detection and characterization of spontaneous internal deletion mutants of <it>Beet Necrotic </it>yellow <it>vein virus </it>RNA3 from systemic host <it>Nicotiana benthamiana</it>

    No full text
    Abstract Background Beet Necrotic Yellow Vein virus (BNYVV) is a member of the genus Benyvirus causing a worldwide sugar beet disease rhizomania. BNYVV contains four or five plus-sense single stranded RNAs. In altered selective conditions, multipartite RNA viruses of plant are prone to undergoing internal deletions, thus turning into Defective RNAs (D RNAs). Although several D RNAs have been reported in BNYVV infection, the spontaneous internal deletion mutants responsible for severe symptom in systemic host Nicotiana benthamiana (N. benthamiana) are not described so far. Results Systemic host N. benthamiana was inoculated by Chinese BNYVV isolates. RT-PCR and Northern blot showed that the D RNAs forms of BNYVV RNA3 were present in the systemic infection of the N. benthamiana. Three distinct D-RNA3s, named as D-RNA 3α, D-RNA 3β and D-RNA 3γ, were made into infectious clones. When inoculated on the N. benthamiana, the in vitro transcripts of D forms exhibited more stable than that of wild-type RNA3 in systemic movement. Among the detected mutant, the p25 protein frame-shift mutant (D-RNA3α) induced obvious necrotic lesions on Tetragonia.expansa (T. expansa) and pronounced systemic symptom on the N. benthamiana. The D-RNA3α was further mutated artificially to pre-terminate the downstream N protein, leading to the abolishment of the pathogenicity, indicating the N protein was responsible for the necrotic symptom. Conclusion Our studies demonstrated the internal deletion mutants of BNYVV-RNA3 were spontaneously generated in the systemic infection on N. benthamiana. The internal deletions didn't affect the efficient replication of D-RNA3s, instead by improving the stability and pathogenicity of RNA3 in the systemic host N. benthamiana. Besides, our results also suggested the downstream N protein of RNA3, but not the upstream p25 protein, may play an important role in the systemic infection on N. benthamiana.</p

    Additive Manufacturing of Silicon Nitride Ceramic Floatation Spheres with Excellent Mechanical Properties

    No full text
    Silicon nitride (Si3N4) ceramic materials are increasingly being used in deep-sea pressure-resistant applications because of their high compressive strength-to-weight ratio. In the present study, Si3N4 ceramic floatation spheres with an outer diameter of approximately 101 mm are successfully batch produced and evaluated. The implementation method was to prepare Si3N4 ceramic hemispherical housings and pair them together. In order to improve the safety of the joint, the hemispherical Si3N4 housings were gradually thickened from 1.80 to 2.50 mm at the equator near the joining surface, based on a 3D model with additive manufacturing technology. The weight-to-displacement ratio of the prepared floatation sphere is approximately 0.34 g/cm3. The flexural strength, compressive strength of the material and the collapse strength of a number of Si3N4 floatation spheres were tested to be 1150, 3847, and 205 MPa, respectively, to confirm the reliability of the process. Additional sustained and cyclic hydrostatic pressure tests simulating the full ocean depth working conditions are carried out on several Si3N4 floatation spheres, which perform very well and do not fail
    corecore