58 research outputs found

    When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All?

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone

    Prognostic Immune Cell Profiling of Malignant Pleural Effusion Patients by Computerized Immunohistochemical and Transcriptional Analysis

    No full text
    Malignant pleural effusion (MPE) is a severe condition of advanced tumors without effective therapy. We used digitalized immunohistochemical and transcriptional approaches to investigate the prognostic influence of immune cells and expression variance of associated immunomodulatory molecules in MPE. Cytology tissue microarrays were constructed from MPE cell blocks of 155 patients with five tumor entities. Immune cells lineage markers were quantified by computational cytopathology on immunohistochemistry. mRNA expression analysis of nine lineage markers and 17 immunomodulators was performed by NanoString. Immunohistochemically quantified high B cells to leukocytes ratio (hazard ratio (HR) = 0.70, p-value = 0.043) and low neutrophils to leukocytes ratio (HR = 1.78, p-value = 0.003) were favorable prognosticators for overall survival independent of tumor entity. Correspondingly, patients with high B cells but low neutrophils gene expression signature showed longer median overall survival of 500 days (HR = 2.29, p-value = 0.009). Regarding targetable molecule expressions, lung adenocarcinomas were characterized by high PD-L1, but mesothelioma by high LAG-3. Ovarian carcinoma was least immunogenic. Independent of tumor entity, the condition of the immune system in MPE liquids is able to provide additional prognostic cytologic information. Combined analysis of lineage specific markers and related immunomodulators may direct immune-based therapeutic decisions

    Enhanced prognostic stratification of neoadjuvant treated lung squamous cell carcinoma by computationally-guided tumor regression scoring

    Get PDF
    INTRODUCTION The amount of residual tumor burden after neoadjuvant chemotherapy is an important prognosticator, but for non-small cell lung carcinoma (NSCLC), no official regression scoring system is yet established. Computationally derived histological regression scores could provide unbiased and quantitative readouts to complement the clinical assessment of treatment response. METHODS Histopathologic tumor regression was microscopically assessed on whole cases in a neoadjuvant chemotherapy-treated cohort (NAC, n = 55 patients) of lung squamous cell carcinomas (LSCC). For each patient, the slide showing the least pathologic regression was selected for subsequent computational analysis and histological features were quantified: percentage of vital tumor cells (cTu.Percentage), total surface covered by vital tumor cells (cTu.Area), area of the largest vital tumor fragment (cTu.Size.max), and total number of vital tumor fragments (cTu.Fragments). A chemo-naïve LSCC cohort (CN, n = 104) was used for reference. For 23 of the 55 patients [18^{18}F]-Fluorodeoxyglucose (FDG) PET/CT measurements of maximum standard uptake value (SUVmax_{max}), background subtracted lesion activity (BSL) and background subtracted volume (BSV) were correlated with pathologic regression. Survival analysis was carried out using Cox regression and receiver operating characteristic (ROC) curve analysis using a 3-years cutoff. RESULTS All computational regression parameters significantly correlated with relative changes of BSV FDG PET/CT values after neoadjuvant chemotherapy. ROC curve analysis of histological parameters of NAC patients showed that cTu.Percentage was the most accurate prognosticator of overall survival (ROC curve AUC = 0.77, p-value = 0.001, Cox regression HR = 3.6, p = 0.001, variable cutoff < = 30 %). CONCLUSIONS This study demonstrates the prognostic relevance of computer-derived histopathologic scores. Additionally, the analysis carried out on slides displaying the least pathologic regression correlated with overall pathologic response and PET/CT values. This might improve the objective histopathologic assessment of tumor response in neoadjuvant setting

    Prognostic Immune Cell Profiling of Malignant Pleural Effusion Patients by Computerized Immunohistochemical and Transcriptional Analysis

    Get PDF
    Malignant pleural effusion (MPE) is a severe condition of advanced tumors without effective therapy. We used digitalized immunohistochemical and transcriptional approaches to investigate the prognostic influence of immune cells and expression variance of associated immunomodulatory molecules in MPE. Cytology tissue microarrays were constructed from MPE cell blocks of 155 patients with five tumor entities. Immune cells lineage markers were quantified by computational cytopathology on immunohistochemistry. mRNA expression analysis of nine lineage markers and 17 immunomodulators was performed by NanoString. Immunohistochemically quantified high B cells to leukocytes ratio (hazard ratio (HR) = 0.70, p-value = 0.043) and low neutrophils to leukocytes ratio (HR = 1.78, p-value = 0.003) were favorable prognosticators for overall survival independent of tumor entity. Correspondingly, patients with high B cells but low neutrophils gene expression signature showed longer median overall survival of 500 days (HR = 2.29, p-value = 0.009). Regarding targetable molecule expressions, lung adenocarcinomas were characterized by high PD-L1, but mesothelioma by high LAG-3. Ovarian carcinoma was least immunogenic. Independent of tumor entity, the condition of the immune system in MPE liquids is able to provide additional prognostic cytologic information. Combined analysis of lineage specific markers and related immunomodulators may direct immune-based therapeutic decisions

    Application of rotary geosteering drilling in deep and thin reservoirs of Tarim Basin, NW China

    No full text
    Geological features, such as deep and thin reservoirs and unstable structure margin, occur in an oilfield of the Tarim Basin. To deal with these problems while drilling, a rotary geosteering drilling technique was introduced. The effect of its application was analyzed with an example, the shortcomings were summarized, and suggestions were given for other oilfileds. The feasibility and necessity of using rotary geosteering drilling were presented according to the engineering challenges in the oilfield, then the theory and main tools of it were introduced. Focusing on a double-step horizontal well in field application, the features and effects of this technique were elaborated. With rotary geosteering drilling in this well, the average rate of penetration was high and oil reservoir encountering rate was up to 82% in thin layers less than 1 m. Also, it avoided effortless weight on bit in sliding drilling method and made the wellbore more smooth and clean. The problems met were concluded, for example, the tools build-up rate was affected by several factors, measurement while drilling (MWD) signal was interfered, and the tools working performance was unstable. Suggestions were put forward for applying the rotary geosteering drilling technique in other oilfields. Key words: horizontal well, drilling, rotary geosteering, deep thin reservoir, logging while drilling (LWD

    Evaluation of TMPA 3B42-V7 Product on Extreme Precipitation Estimates

    No full text
    Availability of precipitation data at high spatial and temporal resolution is crucial for the understanding of precipitation behaviors that are determinant for environmental aspects such as hydrology, ecology, and social aspects like agriculture, food security, or health issues. This study evaluates the performance of 3B42-V7 satellite-based precipitation product on extreme precipitation estimates in China, by using the Fuzzy C-Means algorithm and L-moment-based regional frequency analysis method. The China Gauge-based Daily Precipitation Analysis (CGDPA) product is employed to measure the estimation biases of 3B42-V7. Results show that: (1) for most regions of China, the Generalized Extreme Value and Generalized Normal distributions are preferable for extreme precipitation estimates; (2) the extreme precipitation estimations of 3B42-V7 for different return periods have a high correlation with those of CGDPA, with biases within 25% for a majority of China on extreme precipitation estimates

    Evaluation of TMPA 3B42-V7 Product on Extreme Precipitation Estimates

    No full text
    Availability of precipitation data at high spatial and temporal resolution is crucial for the understanding of precipitation behaviors that are determinant for environmental aspects such as hydrology, ecology, and social aspects like agriculture, food security, or health issues. This study evaluates the performance of 3B42-V7 satellite-based precipitation product on extreme precipitation estimates in China, by using the Fuzzy C-Means algorithm and L-moment-based regional frequency analysis method. The China Gauge-based Daily Precipitation Analysis (CGDPA) product is employed to measure the estimation biases of 3B42-V7. Results show that: (1) for most regions of China, the Generalized Extreme Value and Generalized Normal distributions are preferable for extreme precipitation estimates; (2) the extreme precipitation estimations of 3B42-V7 for different return periods have a high correlation with those of CGDPA, with biases within 25% for a majority of China on extreme precipitation estimates

    Surface Water Quality Evaluation Based on a Game Theory-Based Cloud Model

    No full text
    Water quality evaluation is an essential measure to analyze water quality. However, excessive randomness and fuzziness affect the process of evaluation, thus reducing the accuracy of evaluation. Therefore, this study proposed a cloud model for evaluating the water quality to alleviate this problem. Analytic hierarchy process and entropy theory were used to calculate the subjective weight and objective weight, respectively, and then they were coupled as a combination weight (CW) via game theory. The proposed game theory-based cloud model (GCM) was then applied to the Qixinggang section of the Beijiang River. The results show that the CW ranks fecal coliform as the most important factor, followed by total nitrogen and total phosphorus, while biochemical oxygen demand and fluoride were considered least important. There were 19 months (31.67%) at grade I, 39 months (65.00%) at grade II, and one month at grade IV and grade V during 2010&ndash;2014. A total of 52 months (86.6%) of GCM were identical to the comprehensive evaluation result (CER). The obtained water quality grades of GCM are close to the grades of the analytic hierarchy process weight (AHPW) due to the weight coefficient of AHPW set to 0.7487. Generally, one or two grade gaps exist among the results of the three groups of weights, suggesting that the index weight is not particularly sensitive to the cloud model. The evaluated accuracy of water quality can be improved by modifying the quantitative boundaries. This study could provide a reference for water quality evaluation, prevention, and improvement of water quality assessment and other applications

    Retrieving Eutrophic Water in Highly Urbanized Area Coupling UAV Multispectral Data and Machine Learning Algorithms

    No full text
    With the rapid development of urbanization and a population surge, the drawback of water pollution, especially eutrophication, poses a severe threat to ecosystem as well as human well-being. Timely monitoring the variations of water quality is a precedent to preventing the occurrence of eutrophication. Traditional monitoring methods (station monitoring or satellite remote sensing), however, fail to real-time obtain water quality in an accurate and economical way. In this study, an unmanned aerial vehicle (UAV) with a multispectral camera is used to acquire the refined remote sensing data of water bodies. Meanwhile, in situ measurement and sampling in-lab testing are carried out to obtain the observed values of four water quality parameters; subsequently, the comprehensive trophic level index (TLI) is calculated. Then three machine learning algorithms (i.e., Extreme Gradient Boosting (XGB), Random Forest (RF) and Artificial Neural Network (ANN)) are applied to construct the inversion model for water quality estimation. The measured values of water quality showed that the trophic status of the study area was mesotrophic or light eutrophic, which was consistent with the government’s water-control ambition. Among the four water quality parameters, TN had the highest correlation (r = 0.81, p = 0.001) with TLI, indicating that the variation in TLI was inextricably linked to TN. The performances of the three models were satisfactory, among which XGB was considered the optimal model with the best accuracy validation metrics (R2 = 0.83, RMSE = 0.52). The spatial distribution map of water quality drawn by the XGB model was in good agreement with the actual situation, manifesting the spatial applicability of the XGB model inversion. The research helps guide effective monitoring and the development of timely warning for eutrophication

    Simulation Analysis of Liquid Flow in a Vane-type Surface Tension Tank

    No full text
    With the development of space technology, space missions are becoming more and more complex, which puts forward higher requirements for the service life and anti-interference ability of fuel tanks. Due to its lightweight, long service life, and easy processing, the vane-type surface tension tank has been more and more widely used. The vane-type tank enables propellant management with surface tension, however the surface tension is weak. As a result, the control ability of the propellant is limited, which is not suitable for high dynamic maneuvering conditions. This problem limits the development of the vane-type tank and the expansion of mission scenarios. In order to further enhance the propellant management ability of the vane-type surface tension tank, this paper numerically investigated the influence of the T-shaped vane and the perforated vane on propellant management. By applying different boundary conditions, its liquid control ability under complex working conditions is checked. The results show that the T-shaped vane can obviously enhance the liquid transport ability of the tank; the perforated vane can significantly reduce weight, however it weakens the liquid transport ability. The work of this paper can be used to guide the design of the vane-type surface tension tank and has certain guiding significance for the improvement of propellant management performance
    • …
    corecore