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A B S T R A C T

Introduction: The amount of residual tumor burden after neoadjuvant chemotherapy is an important prog-

nosticator, but for non-small cell lung carcinoma (NSCLC), no official regression scoring system is yet estab-

lished. Computationally derived histological regression scores could provide unbiased and quantitative readouts

to complement the clinical assessment of treatment response.

Methods: Histopathologic tumor regression was microscopically assessed on whole cases in a neoadjuvant

chemotherapy-treated cohort (NAC, n=55 patients) of lung squamous cell carcinomas (LSCC). For each patient,

the slide showing the least pathologic regression was selected for subsequent computational analysis and his-

tological features were quantified: percentage of vital tumor cells (cTu.Percentage), total surface covered by vital

tumor cells (cTu.Area), area of the largest vital tumor fragment (cTu.Size.max), and total number of vital tumor

fragments (cTu.Fragments). A chemo-naïve LSCC cohort (CN, n= 104) was used for reference. For 23 of the 55

patients [18F]-Fluorodeoxyglucose (FDG) PET/CT measurements of maximum standard uptake value (SUVmax),

background subtracted lesion activity (BSL) and background subtracted volume (BSV) were correlated with

pathologic regression. Survival analysis was carried out using Cox regression and receiver operating char-

acteristic (ROC) curve analysis using a 3-years cutoff.

Results: All computational regression parameters significantly correlated with relative changes of BSV FDG PET/

CT values after neoadjuvant chemotherapy. ROC curve analysis of histological parameters of NAC patients

showed that cTu.Percentage was the most accurate prognosticator of overall survival (ROC curve AUC=0.77, p-

value= 0.001, Cox regression HR=3.6, p=0.001, variable cutoff< =30 %).

Conclusions: This study demonstrates the prognostic relevance of computer-derived histopathologic scores.

Additionally, the analysis carried out on slides displaying the least pathologic regression correlated with overall

pathologic response and PET/CT values. This might improve the objective histopathologic assessment of tumor

response in neoadjuvant setting.

1. Introduction

In a neoadjuvant setting, the administration of chemotherapy before

surgery may result in significant reduction of the tumor burden, thus

enabling radical resection in otherwise not operable patients. This

treatment strategy has been shown to improve both overall (OS) [1]

and recurrence-free survival (RFS) in resectable non-small cell lung

carcinoma (NSCLC) [2]. Neoadjuvant chemotherapy induces distinctive

morphological changes of both tumor and stromal compartments of

solid carcinomas. This often results in significant reduction of tumor

burden, which is accompanied by an increase of fibrotic stroma and

necrosis as well as an increased infiltration by foamy cell macrophages

[3].

Although there is no WHO-accepted consensus for regression

scoring of NSCLC [4], the extent of residual vital tumor epithelia to-

gether with the amount of fibrosis are important prognostic parameters

[5]. Several regression scoring systems have been proposed for this

tumor based on the percentage of remaining tumor cells [6–8] or the

residual tumor area [9]. However, most scoring methods rely on a semi-

quantitative and visual pathologic evaluation of the residual tumor

burden on H&E stained whole sections. Therefore, accurate quantifi-

cation of morphologic parameters including amount and size of residual
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tumor tissue could be useful for improving and standardizing current

NSCLC regression schemes [10]. Junker et al. proposed a regression

scheme in 3 grades starting from a grade 1 defined as no or only

spontaneous regression, a grade 2 as incomplete regression (2a

with> 10 %, 2b with≤10 % vital tumor cells) and grade 3 as complete

regression without any detectable vital tumor cells [6,7]. Following

these results, it has been shown that NSCLC with less than 10 % of

residual vital tumor cells [8,11], a histopathological complete remis-

sion (CR) [12,13] or a total area of residual tumor (ART) ≤400 mm2

[9] were favorable prognostic parameters. Thus, the automatic quan-

tification of morphologic parameters could be a good indicator of the

effectiveness of therapy in NSCLC [10].

The field of tissue diagnostics is witnessing substantial changes with

the recent approval of Whole Slide Imaging (WSI) for primary diagnosis

[14] and the rapid development of not only information management

systems but also digital image analysis tools encompassing im-

munohistochemical staining scoring, detection of regions of interest

displaying abnormalities and other prognostic algorithms. Hence,

computational pathology has the potential to integrate routine pa-

thology workflow and reduce pathologist’s workload by performing

time-consuming tasks [15,16].

We have previously developed an image analysis approach to

quantify tumor fragmentation [17] in lung squamous cell carcinoma

(LSCC), the second most common histological subtype of NSCLC [18].

This structural feature was associated with increased tumor invasion

and poor prognosis. Herein, we have extended our approach to evaluate

the potential clinical relevance of four computerized morphologic

parameters related to the residual tumor burden in a cohort of 55

neoadjuvant treated (NAC) LSCC. We investigated the prognostic value

of computational tumor regression scoring in comparison to conven-

tional histopathologic regression scoring and further evaluated their

correlation with [18F]- Fluorodeoxyglucose (FDG)PET/CT-based tumor

metabolic activity parameters.

2. Materials and methods

2.1. Patient cohorts

In this retrospective study, patients with diagnosed primary LSCC at

the University Hospital Zurich were selected. Patients with synchronic

or metachronic second primary tumor, with overall survival (OS)< 1

month post-surgery and/or with incomplete clinical data were ex-

cluded. Squamous cell differentiation according to WHO criteria was

assessed on hematoxylin-eosin (H&E) stains and verified by alcian blue-

periodic acid schiff (AB-PAS) histochemistry as well as TTF1, p40, CK7

and synaptophysin immunohistochemistry (IHC) for poorly differ-

entiated LSCC. The neoadjuvant chemotherapy group (NAC cohort)

consisted of 55 patients diagnosed with LSCC with a median follow-up

time of 51 months (range: 2–141). In total 19 patients received gem-

citabine-platinum chemotherapy, 26 taxane-platinum and 10 other

combinations. Chemotherapy cycles ranged from two to five (2 cycles:

n= 3, 3 cycles n=43, 4 cycles: n= 7, 5 cycles: n= 2.

Histopathological regression after neoadjuvant chemotherapy was

evaluated by microscopy by two observers simultaneously on H&E

tissue sections. The tumor regression grade (TRG) was evaluated on all

available tissue blocks and referred to the amount of non-vital tumor

tissue induced by the chemotherapy - characterized by the presence of

extensive necrosis and fibrosis, foamy cells reactions and cholesterol

crystals - in relation to the remaining vital tumor cells. TRG was eval-

uated as follows : complete pathologic response (CPR, 0% of remaining

tumor cells), major pathologic response (MPR,< 10 % remaining

tumor cells) and minor pathologic response (IPR > 10 % remaining

tumor cells) similar to [5]. The chemo-naïve cohort (CN) consisted of

104 patients with a median follow-up time of 52 months (range:

2–137). The ethical commission of the Canton of Zurich approved the

study under reference number KEK ZH-Nr. 29-2009/14.

2.2. Histopathological samples preparation

For each neoadjuvant treated case, one tissue block with the highest

amount of residual tumor tissue (i.e. the least pathologic regression)

was selected for pan-cytokeratin IHC. For the chemo-naïve cases, two

representative tumor blocks were selected to perform a comparative

analysis. Tissue sections of 2 μm thickness were prepared for the se-

lected tumor blocks and IHC was performed using mouse monoclonal

anti-human cytokeratin AE1/AE3 (M3515, DAKO, dilution 1:50) on an

automated platform (Ventana Medical Systems, Tucson, AZ, USA). The

following detection was finalized with a secondary antibody and the

OptiView DAB kit (Ventana Medical Systems). IHC stained sections

were scanned using a high-resolution whole slide scanner (Nanozoomer

Digital Pathology, Hamamatsu, Japan) using a 40x objective and

downscaled to a spatial resolution of 0.23 μm/pixel. Tumor tissue was

manually annotated by a surgical pathologist (A.S.) in order to exclude

surrounding non-tumor lung tissue from the analysis.

2.3. Image processing and regression scoring

For the CN cohort, a color threshold was used to segment malignant

tumor tissue (brown positive signal) from its surrounding desmoplastic

stroma (blue-grey counterstain) using Fiji [19], as described [17].

Morphologic parameters of the segmented tumor tissue were retrieved

for each tumor specimen and computed as following: 1. percentage of

vital tumor cells (cTu.Percentage = tumor cells area/[tumor cells

area+ stroma area]*100), 2. total surface covered by vital tumor cells

(cTu.Area), 3. size of the largest vital tumor fragment (cTu.Size.max), 4.

total number of vital tumor fragments (cTu.Fragments), defined as

disconnected carcinoma fragment larger than 800 μm2, separated by

stroma. As chemo-treated cases often show extensive necrosis or un-

specific staining, tissue segmentation of vital tumor epithelia versus

necrosis and/or unspecific stromal staining was performed by a train-

able algorithm using the software inForm Tissue Finder™ (PerkinElmer,

Waltham, MA, USA).

2.4. FDG PET/CT acquisition and analysis

Patients from the NAC cohort with available FDG PET/CT before

and after neoadjuvant treatment (before tumor resection) were ana-

lyzed. FDG PET/CT selection criteria were: fasting for at least 4 h, no

elevated blood glucose, adequate FDG injection (difference< 100MBq

between both FDG injections), FDG uptake time within 45−60min and

acceptable image quality. For a total of 23 patients, pre and post-

neoadjuvant chemotherapy images were available. The detailed pro-

tocol is explained in our previous study [20]. Metabolic tumor activity

was measured following the instructions as described [21] and was

performed without knowledge of regression scores. The maximum

Standard Uptake Value (SUVmax), background subtracted lesion activity

(BSL) and background subtracted volume (BSV) were considered in this

analysis. In brief, a volume of interest was placed around the primary

tumor, including the entire tumor activity without regions of physio-

logically increased activity (e.g. FDG-uptake of the heart). Within the

selected VOI SUVmax, BSL and BSVusing a background adapted

threshold for each lesion were measured [22]. The relative change in

FDG-PET metrics between post- and pre-neoadjuvant chemotherapy

was calculated (dSUVmax, dBSL and dBSV).

2.5. Data interpretation and statistical analysis

All statistical analyses were performed on SPSS version 25 software

(SPSS Inc., Chicago, USA), R version 3.5.0 and R-studio version 1.1.383.

Overall survival (OS) and relapse-free survival (RFS) were evaluated

from the date of surgery to the date of death or documented relapse, as

described [23]. Only patients with no evidence of remaining tumor

after surgical resection of the primary tumor (R0) were included in RFS
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calculations. Quantitative morphologic differences between neoadju-

vant chemo-treated (NAC) and chemo-naïve (CN) groups were ad-

dressed using the Wilcoxon signed-rank test. Correlations between the

FDG PET/CT metrics (SUVmax, BSL and BSV) and the morphologic

parameters (cTu.Percentage, cTu.Area, cTu.Size.max, cTu.Fragments)

were calculated using the non-parametric Spearman’s rank correlation

test. A receiver operator characteristic (ROC) curve was generated for

each morphologic parameter using a cutoff of 3-year OS and RFS to

separate short and long-term survivors. The area under the ROC curve

(AUROC) was computed for each parameter. Patients with clinical

follow-up shorter than 3 years were omitted in the ROC analysis. The

optimal cutoff point was determined for each parameter with the point

that minimizes the distance to the top-left corner in the ROC plane as

described [24]. Kaplan-Meier curve p-values were calculated using the

log-rank test. Hazard ratios were retrieved by univariate Cox regression.

Ordinal categorical variables were coded using Reverse Helmert coding

(each level of categorical variable is compared to the mean of the

previous level). P-values< 0.05 were considered significant.

3. Results

3.1. Neoadjuvant treatment induces significant morphologic changes in

LSCC tissue

Morphologic changes after neoadjuvant treatment were addressed

by comparing the NAC cohort with the untreated CN group. In total

four computerized morphologic parameters representing the percen-

tage of tumor cells within the tumor area (cTu.Percentage), the total

tumor cells surface (cTu.Area), the largest fragment (cTu.Size.max) and

the total number of tumor fragments (cTu.Fragments) were quantified

by image-based morphometric analysis for all LSCC cases (Fig. 1A–C).

The distribution of these morphometric parameters was significantly

different between the two cohorts and all four parameters were con-

siderably reduced in the NAC compared to CN group (all p-values<

0.001) (Fig. S1, A–H). Histological examples of NAC LSCCs showing

different regression patterns are shown in Fig. 1(D–F).

Within the NAC group, morphologic alterations were compared

between gemcitabine-platinum (n=19) and taxane-platinum (n= 26)

regimens excluding other treatment combinations. Results showed that

cTu.Area and cTu.Size.max values were lower for the taxane-platinum

treated group, using the non-parametric Mann-Whitney U test

(p= 0.040 and p=0.009, respectively) (Figure S2).

3.2. Computerized histological regression scoring improves LSCC prognostic

stratification

The distribution of clinic-pathologic parameters for the NAC and CN

cohorts is summarized in Table 1. The CN cohort showed similar clin-

ical parameters distributions. In the NAC cohort particularly, age, ypN,

ypM and stage were prognostic parameters whereas no survival dif-

ference was observed between different chemotherapy regimens

(p=0.239).

To better compare the prognostic relevance of clinical and compu-

tational parameters, ROC analysis was performed with patients strati-

fied into short-term and long-term survival, using a threshold of 3-year

OS. In the NAC cohort, 22 and 33 patients were respectively grouped

like this. In the CN cohort, 37 and 67 patients were split into short and

long-term OS. The results for the NAC cohort showed that the para-

meters cTu.Percentage, cTu.Area, and cTu.Size.max were able to sig-

nificantly stratify patients in two risk groups, using a 3-year OS cutoff,

whereas cTu.Fragments was not prognostic (Fig. 2, A). The parameters

cTu.Area and cTu.Size.max were consistently prognostic using a 3-year

RFS cutoff point (Figure S3). In contrast, for CN patients, cTu.Percen-

tage, cTu.Area, and cTu.Size.max were not significant parameters

whereas cTu.Fragments was the best discriminative morphologic

parameter using 3-year OS and RFS cutoffs (Figure S4).

Following these results, further clinical analysis was conducted on

the NAC cohort focusing on clinic-pathologic parameters. ROC analysis

showed that stage, ypN and TRG were able to stratify patients in two

risk groups, whereas ypT was not significant (Figure S5). Stage and ypN

showed the highest area under the ROC (AUROC) and were comparable

with the computational parameter cTu.Percentage. Similar results were

found using a 3-year RFS cutoff (Figure S3, B). Additionally, univariate

cox regression was performed for all computational parameters as well

as most relevant clinico-pathologic parameters, dichotomized at their

optimal cutoff point (Table 2). High cTu.Percentage and cTu.Size.max

values were significantly associated with decreased OS, whereas

cTu.Area, cTu.Fragments and TRG scores were not significantly prog-

nostic (p > 0.05). Kaplan Meier survival curves are shown in

Fig. 2(B–G).

3.3. Computational histological regression correlates with relative FDG

PET/CT metabolic changes before and after neoadjuvant chemotherapy

The correlation of histopathological regression with tumor meta-

bolic activity was addressed using pre- and post-NAC FDG PET/CT

scans. Relative changes between pre- and post-chemo were also con-

sidered in the analysis (delta values). Histopathological regression was

evaluated using all four computational parameters (cTu.Percentage,

cTu.Area, cTu.Size.max, and cTu.Fragments) in addition to the con-

ventional TRG scores.

The comparison of pre-NAC, post-NAC and the corresponding re-

lative changes (delta-NAC) FDG PET/CT parameters showed, that post-

NAC FDG PET/CT volumetric values (BSL and BSV) positively corre-

lated with all computational parameters whereas pre-NAC FDG PET/CT

values did not show any significant correlation with any tumor re-

gression parameter (Fig. 3). Among all FDG PET/CT values, the volume-

based metric dBSV correlated best with all regression parameters on

both post-NAC and delta-NAC settings. Both post-NAC and delta-NAC

SUVmax significantly correlated with c.Tu.Percentage and TRG only.

Among the computed regression parameters, cTu.Percentage was the

only one consistently correlating with all FDG PET/CT parameters post

NAC.

4. Discussion

In this study we proposed an approach to quantify tumor regression

in lung squamous cell carcinoma after neoadjuvant chemotherapy by

computational pathology. Four computational histo-morphologic

parameters related to the residual tumor burden were quantified using

pan-cytokeratin immunohistochemistry and compared to the patho-

logic response using a three-tiered tumor regression scoring system

assessed by the pathologist on H&E stained whole section microscopy.

Correlations with FDG PET/CT values and clinical outcome were as-

sessed in order to address the potential clinical relevance of quantita-

tive tumor regression readouts for routine response assessment after

neoadjuvant therapy.

We focused our study on the morphologic changes induced by NAC

in a cohort of lung squamous cell carcinoma (LSCC). Unlike adeno-

carcinoma which grows in five distinct morphologic patterns [25],

LSCC is histologically characterized by the presence of solid tumor

epithelia sheets of varying size and cohesiveness displaying various

degrees of keratinization [26]. Our morphometric analysis showed that

cTu.Percentage, cTu.Area, cTu.Size.max and cTu.Fragments were all

significantly decreased in neoadjuvant chemotherapy treated patients

when compared to a chemo-naïve cohort. Moreover, survival analysis

showed that high residual cTu.Percentage, cTu.Area and cTu.Size.max

values after neoadjuvant chemotherapy were markers of poor prog-

nosis. In contrast, these parameters were not prognostic in the chemo-

naïve setting, whereas cTu.Fragments, a parameter reflecting tumor

invasiveness, was prognostic only in this group of patients. This also

suggests that computational histo-morphologic parameters may allow
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Fig. 1. Computerized morphometric analysis. A) Overview of a lung squamous cell carcinoma stained by pan-cytokeratin IHC. Scale bar: 10mm. Left:

Corresponding schematic of the sampling strategy. The top section represents the slide with the least regression (i.e. highest amount of residual tumor tissue) selected

for morphometric analysis. (Legend: brown= vital tumor content, grey= regressed tumor area without vital tumor cells. Top-right: magnified area of interest, scale

bar: 1mm. B) Corresponding tissue detection (overlay) after trainable tissue region segmentation. Legend: T= tumor tissue (red); S= stroma (green); U= unspecific

staining (yellow), accounting for stroma. C) Analysis of tumor fragments i.e. connected tumor regions and corresponding masks colored by size in μm2. D-F)

Histological example of NAC treated LSCCs showing different degrees of tumor regression (D) IPR with no signs of regression, (E) IPR with minor signs of regression,

(F) MPR with<10 % vital tumor cells. Scale bar= 200 μm.

Table 1

Univariate Cox regression analysis and summary of clinico-pathologic parameters.

Clinicopathologic parameters Neoadjuvant chemo-treated (NAC) n=55 Chemo-naïve (CN) n= 104

N % HR CI (95 %) p N % HR CI (95 %) p

Age range: 40−76 years 0.049 Age range: 40−87 years 0.207

≤median (61) 28 (51 %) 1.0 – – ≤median (65) 55 (53 %) 1.0 – –

>median 27 (49 %) 1.4 (1.0−2.0) 0.049 > 65 49 (47 %) 1.3 (0.8−2.2) 0.207

Sex 0.897 Sex 0.190

female 12 (22 %) 1.0 – – female 21 (20 %) 1.0 – –

male 43 (78 %) 1.1 (0.45−2.47) 0.897 male 83 (80 %) 0.7 (0.4−1.2) 0.190

ypT 0.658 pT <0.001

0 5 (9%) 1.0 – –

1 19 (34 %) 3.4 (0.4−26.7) 0.241 1 24 (23 %) 1.0 – –

2 13 (24 %) 1.5 (0.4−5.3) 0.498 2 34 (33 %) 1.203 (0.6−2.4) 0.604

3 7 (13 %) 1.8 (0.5−6.9) 0.412 3 34 (33 %) 1.827 (1.1−3.1) 0.027

4 11 (20 %) 1.9 (0.7−5.0) 0.199 4 12 (12 %) 3.787 (2.0−7.3) <0.001

ypN 0.010 pN 0.075

0 26 (47 %) 1.0 – 0 49 (47 %) 1.0 – –

1 20 (37 %) 0.9 (0.4−2.1) 0.795 1 34 (33 %) 1.808 (1.1−3.1) 0.032

2−3 9 (16 %) 3.7 (1.6−8.7) 0.002 2−3 21 (20 %) 1.24 (0.7−2.2) 0.462

ypM 0.014 pM <0.001

0 54 (98 %) 1.0 – – 0 100 (96 %) 1.0 – –

1a-c 1 (2%) 17.3 (1.8−166.55) 0.014 1a-c 4 (4%) 27.0 (7.6−95-7) <0.001

Stage 0.005 Stage <0.001

0 5 (9 %) 1.0 – –

I 13 (23 %) 2.3 (0.3−18.6) 0.450 I 26 (25 %) 1.0 – –

II 14 (26 %) 1.4 (0.4−5.0) 0.629 II 38 (37 %) 1.4 (0.7−2.8) 0.326

III 22 (40 %) 4.1 (1.6−10.6) 0.004 III 36 (35 %) 2.2 (1.3−3.7) 0.002

IV 1 (2%) 27.5 (2.7−280.3) 0.005 IV 4 (4%) 30.1 (8.4−107.4) <0.001

Legend: NAC=neoadjuvant chemotherapy; CN= chemo-naive; HR=hazard ratio; CI= 95 % confidence interval; p(T/N/M)=pathologic evaluation (y) after

neoadjuvant chemotherapy.
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for differential tumor grading for patients having received che-

motherapy prior to surgical resection. In this study, although compu-

tational morphologic parameters were highly correlated with each

other, ROC analysis showed that cTu.Percentage was the most relevant

qualifier for the stratification of patients into high and low risks cate-

gories, using a 3-year OS cutoff. When compared to clinical parameters,

cTu.Percentage showed similar performances than tumor stage and

lymph node involvement as well as better performances than TRG

scores described in [6,7].

FDG PET/CT is a valuable imaging modality to predict histological

response after neoadjuvant therapy [27]. In our study, PET/CT-mor-

phometry correlation analysis was performed using the SUVmax in ad-

dition to two volume-based PET values accounting for the lesion ac-

tivity (BSL) and the metabolic tumor volume (BSV) as metrics of tumor

metabolic activity. Our analysis showed that computed regression

parameters correlated best with BSV for both post-NAC and delta-NAC

FDG PET/CT, whereas SUVmax was only associated with the percentage

of residual tumor cells and TRG scores. This could be potentially re-

levant when reporting PET/CT values, since the metabolically active

tumor volume could better reflect histological features compared to

SUVmax. Not surprisingly, our analysis showed that, overall, pre-NAC

FDG PET/CT values did not correlate with the measured histological

parameters. This is in line with previous studies, showing that the

change of standardized uptake values correlate with histopathologic

responses in NSCLC [28–33] whereas pre-chemo PET/CT is likely to be

insufficient to predict pathologic response in LSCC [30].

Our study has nonetheless limitations. The morphometric analysis

was performed using the tissue block showing the least pathologic re-

gression and pan-cytokeratin IHC, whereas following the most recent

recommendations, pathologic response to therapy should include all H

&E slides of tumor [5]. For this reason, our cTu.Percentage scores are

virtually higher and cannot be directly compared with previously

published pathologic scores. However, our survival analysis showed

that regression scores done on the histological cut section displaying

the least regression pattern, was significantly prognostic and showed

better prediction performances than TRG scores. Follow-up studies

could assess whether the least histological regression would be a better

prognosticator than evaluating tumor regression over the whole tumor

area for LSCC. Additionally, our study focused solely on squamous cell

carcinoma of the lung, which is a subtype of NSCLC. Adenocarcinomas

are grouped into five morphologic subtypes: lepidic, acinar, papillary,

micropapillary and solid [25]. These morphologic patterns significantly

affect FDG uptake [34] and it has been shown that squamous cell car-

cinomas have higher SUV uptake than adenocarcinomas [35–39].

Therefore, in order to study a homogeneous population by morpho-

metrics and PET analyses, only LSCC were selected in our study. Finally,

we presented here a retrospectively study. To determine whether

computerized regression scoring could serve as surrogate histopatho-

logical response assessment with clinical benefit, larger validation

studies would be required.

5. Conclusions

The field of pathology is witnessing substantial transformations,

with the growing acceptance of whole slide imaging for full sign-out of

Fig. 2. ROC curves and survival analysis of morphologic parameters for neoadjuvant-treated patients. A) Receiver operator characteristic (ROC) curves for the

status 3-year overall survival using computational morphologic parameters (C-Parameters) for all NAC patients. B-G) Kaplan Meier survival curves for all C-

Parameters as well as histopathological TRG scores (CPR= complete pathologic response, MPR=major pathologic response, IPR=minor pathologic response).

AUC= area under the curve; CI= confidence interval; cTu.Percentage= percentage of tumor cells within the whole tumor tissue; cTu.Area= vital tumor cells area

[mm]; cTu.Size.max= area of the largest fragment [mm]; cTu.Fragments= number of tumor fragments separated by stroma; time=months.

Table 2

Cox regression analysis of morphologic parameters.

Variables Univariate

HR CI (95 %) p-value

cTu.Percentage < 31 3.6 (1.7–7.5) 0.001

cTu.Area < 36 1.9 (0.9–3.9) 0.077

cTu.Size.max < 18 3.0 (1.5–6.4) 0.003

cTu.Fragments < 261 0.6 (0.3–1.3) 0.230

TRG (CPR+MPR vs IPR) 1.9 (0.9–4.0) 0.094

multivariate

HR CI (95 %) p-value

Stage 0-II vs III-IV 2.6 (1.1–6.1) 0.028

cTu.Percentage < 31 2.6 (1.2–5.8) 0.016

Top: cox univariate analysis using the computational morphologic parameters

cTu.Percentage, cTu.Area, cTu.Size.max, cTu.Fragments dichotomized at the

best cutoff point. TRG=pathological tumor regression grade, dichotomized.

Bottom: multivariate cox regression using the dichotomized Stage (0, I, II vs III-

IV) and cTu.Percentage (cutoff=31). Legend: HR=hazard ratio; CI= 95 %

confidence interval, CPR= complete pathologic response, MPR=major pa-

thologic response, IPR=minor pathologic response.
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diagnostic surgical pathology [40] and the accelerated development of

computational pathology applications. Artificial intelligence algorithms

capable of detecting lymph node metastases on histological images

from breast cancer patients [41,42], or able to predict histopathological

parameters as well as patient outcome using histological sections

[43–48] are few examples of prospective opportunities of computa-

tional pathology to assist pathologists in their daily routine. Reprodu-

cibility studies are currently needed to better assess pathologic response

in the neoadjuvant setting and computational approaches could play

major role in harmonizing pathologic response readouts [5]. In our

study, we have proposed a digital pathology approach for accurate

histopathologic assessment of tumor regression after neoadjuvant che-

motherapy and curative surgery. This approach is not restricted to LSCC

nor to a specific type of treatment. It has the potential to be applied to

larger clinical studies who would benefit from reproducible and quan-

titative histological readouts of treatment response. The histopatholo-

gist would thereby obtain an additional independent computerized re-

gression score.
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chemo and pre-chemo values; SUVmax=maximum standard uptake value; BSV=metabolic tumor volume; BSL= total lesion glycolysis; TRG= tumor regression

score (CPR, MPR, IPR); cTu.Percentage=percentage of tumor cells within the whole tumor tissue; cTu.Area= vital tumor cells area [mm2]; cTu.Size.max= area of

the largest fragment [mm2]; cTu.Fragments= number of tumor fragments separated by stroma; white circles= p-values> 0.05.
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