172 research outputs found

    The compensation incentive effect of athletes: A structural equation model

    Get PDF
    This study explores the compensation incentive effect of athletes. Based on the related literature, we proposed theoretical hypotheses on the compensation incentive effect and established an assessment index system of the compensation incentive effect for athletes. A structural equation model was used to test the survey data of 352 athletes in six provinces to discover the truth of the compensation incentive effect. The results suggested that direct economic compensation satisfaction, direct non-economic compensation satisfaction, and indirect non-economic compensation satisfaction had significant positive effects on the compensation incentive effect of athletes, while indirect economic compensation satisfaction showed no significant effect. Moreover, the evaluation results of athletes’ compensation incentive effect showed that direct economic compensation satisfaction contributed the most to the influence factor of the compensation incentive effect. Therefore, the evaluation of athletes’ compensation incentive effect should focus on variables of direct economic compensation satisfaction, i.e., basic compensation satisfaction, bonus income satisfaction, and subsidy satisfaction. Finally, some strategies and recommendations were suggested to improve the compensation design for athletes

    Efficient clearance of periodontitis pathogens by S. gordonii membrane-coated H<sub>2</sub>O<sub>2</sub> self-supplied nanocomposites in a “Jenga” style

    Get PDF
    As a key pathogen of periodontitis, P. gingivalis requires support of the initial colonizing bacterium (S. gordonii preferably) to form symbiotic biofilms on gingival tissues with enhanced antibiotic resistance. Here, we report a new strategy to treat periodontitis biofilms with S. gordonii membrane-coated H2O2 self-supplied nanocomposites (ZnO2/Fe3O4@MV NPs) in a “Jenga” style. Integration of our special MV coatings enables selectively enhanced internalization of the cargos in S. gordonii, thus inducing severe damage to the foundational bacterial layer and collapse/clearance of symbiotic biofilms consequently. This strategy allows us to clear the symbiotic biofilms of S. gordonii and P. gingivalis with active hydroxyl radicals (˙OH) derived from ZnO2-Fe3O4@MV NPs in a H2O2 self-supplied, nanocatalyst-assisted manner. This “Jenga-style” treatment provides a cutting-edge proof of concept for the removal of otherwise robust symbiotic biofilms of periodontitis where the critical pathogens are difficult to target and have antibiotic resistance.</p

    Phthalate metabolites and sex steroid hormones in relation to obesity in US adults: NHANES 2013-2016

    Get PDF
    BackgroundObesity and metabolic syndrome pose significant health challenges in the United States (US), with connections to disruptions in sex hormone regulation. The increasing prevalence of obesity and metabolic syndrome might be associated with exposure to phthalates (PAEs). Further exploration of the impact of PAEs on obesity is crucial, particularly from a sex hormone perspective.MethodsA total of 7780 adult participants in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016 were included in the study. Principal component analysis (PCA) coupled with multinomial logistic regression was employed to elucidate the association between urinary PAEs metabolite concentrations and the likelihood of obesity. Weighted quartiles sum (WQS) regression was utilized to consolidate the impact of mixed PAEs exposure on sex hormone levels (total testosterone (TT), estradiol and sex hormone-binding globulin (SHBG)). We also delved into machine learning models to accurately discern obesity status and identify the key variables contributing most to these models.ResultsPrincipal Component 1 (PC1), characterized by mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) as major contributors, exhibited a negative association with obesity. Conversely, PC2, with monocarboxyononyl phthalate (MCNP), monocarboxyoctyl phthalate (MCOP), and mono(3-carboxypropyl) phthalate (MCPP) as major contributors, showed a positive association with obesity. Mixed exposure to PAEs was associated with decreased TT levels and increased estradiol and SHBG. During the exploration of the interrelations among obesity, sex hormones, and PAEs, models based on Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) algorithms demonstrated the best classification efficacy. In both models, sex hormones exhibited the highest variable importance, and certain phthalate metabolites made significant contributions to the model’s performance.ConclusionsIndividuals with obesity exhibit lower levels of TT and SHBG, accompanied by elevated estradiol levels. Exposure to PAEs disrupts sex hormone levels, contributing to an increased risk of obesity in US adults. In the exploration of the interrelationships among these three factors, the RF and XGBoost algorithm models demonstrated superior performance, with sex hormones displaying higher variable importance

    Efficient clearance of periodontitis pathogens by S. gordonii membrane-coated H<sub>2</sub>O<sub>2</sub> self-supplied nanocomposites in a “Jenga” style

    Get PDF
    As a key pathogen of periodontitis, P. gingivalis requires support of the initial colonizing bacterium (S. gordonii preferably) to form symbiotic biofilms on gingival tissues with enhanced antibiotic resistance. Here, we report a new strategy to treat periodontitis biofilms with S. gordonii membrane-coated H2O2 self-supplied nanocomposites (ZnO2/Fe3O4@MV NPs) in a “Jenga” style. Integration of our special MV coatings enables selectively enhanced internalization of the cargos in S. gordonii, thus inducing severe damage to the foundational bacterial layer and collapse/clearance of symbiotic biofilms consequently. This strategy allows us to clear the symbiotic biofilms of S. gordonii and P. gingivalis with active hydroxyl radicals (˙OH) derived from ZnO2-Fe3O4@MV NPs in a H2O2 self-supplied, nanocatalyst-assisted manner. This “Jenga-style” treatment provides a cutting-edge proof of concept for the removal of otherwise robust symbiotic biofilms of periodontitis where the critical pathogens are difficult to target and have antibiotic resistance.</p

    Efficient clearance of periodontitis pathogens by S. gordonii membrane-coated H<sub>2</sub>O<sub>2</sub> self-supplied nanocomposites in a “Jenga” style

    Get PDF
    As a key pathogen of periodontitis, P. gingivalis requires support of the initial colonizing bacterium (S. gordonii preferably) to form symbiotic biofilms on gingival tissues with enhanced antibiotic resistance. Here, we report a new strategy to treat periodontitis biofilms with S. gordonii membrane-coated H2O2 self-supplied nanocomposites (ZnO2/Fe3O4@MV NPs) in a “Jenga” style. Integration of our special MV coatings enables selectively enhanced internalization of the cargos in S. gordonii, thus inducing severe damage to the foundational bacterial layer and collapse/clearance of symbiotic biofilms consequently. This strategy allows us to clear the symbiotic biofilms of S. gordonii and P. gingivalis with active hydroxyl radicals (˙OH) derived from ZnO2-Fe3O4@MV NPs in a H2O2 self-supplied, nanocatalyst-assisted manner. This “Jenga-style” treatment provides a cutting-edge proof of concept for the removal of otherwise robust symbiotic biofilms of periodontitis where the critical pathogens are difficult to target and have antibiotic resistance.</p
    corecore