195 research outputs found

    The Mechanics of Fast-Start Performance of Pike Studied Using a Mechanical Fish

    Get PDF
    A northern pike (Esox lucius) is capable of achieving a maximum instantaneous acceleration of 25g, far greater than that achieved by any manmade vehicle. In order to understand the physical mechanisms behind achieving such high accelerations, we have built a mechanical fish to emulate the motion of a pike, a fast-start specialist. A live pike bends its body into either a C-shaped or an S-shaped curve and then uncoils it very quickly to send a traveling wave along its body in order to achieve high acceleration. We have designed a mechanical fish whose motion is accurately controlled by servo motors, to emulate the fast-start by bending its body to a curve from its original straight position, and then back to its straight position. Furthermore, this mechanical fish is designed to be adjustable in swimming pattern, tail shape, tail rigidity, and body rigidity, making it possible to study the influence of all of these parameters on the fast-start performance. Peak accelerations of 2.0 m/s2 and peak velocities of 0.09 m/s are measured. Although the maximum accelerations and velocities observed in our mechanical fish are smaller than those of live fish, the form of the measured acceleration signal as function of time is quite similar to that of a live fish. The hydrodynamic efficiencies are observed to be around 12%, and it is shown that the majority of the thrust is produced at the rear part of the mechanical fish - similarly to the live fish. Copyright © 2011 by ASME

    A review of the spider genus Sinoalaria (Araneae, Theridiosomatidae), with the descriptions of four new species and two new combinations

    Get PDF
    The spider genus Sinoalaria Zhao & Li, 2014 is redefined and reviewed. A total of ten species are studied, including four new species: S. chi Yu & Lin, sp. nov. (♂♀), S. shenhei Yu & Lin, sp. nov. (♀), S. shuidi Yu & Lin, sp. nov. (♀), S. xiaotu Yu & Lin, sp. nov. (♂♀). Two new combinations are proposed: Sinoalaria nitida (Zhao & Li, 2012), comb. nov. and S. prolata (Zhao & Li, 2012), comb. nov., both transferred from Karstia Chen, 2010. The material of six known species were re-examined and photographed, including the type species, S. chengguanensis (Zhao & Li, 2012). A key is provided for all species of the genus, as well as diagnoses, illustrations, and a distribution map

    Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    Get PDF
    Background: Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods: The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results: Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions: Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes

    Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts

    Get PDF
    Background Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). Methods The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Results Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Conclusions Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes

    STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension

    Full text link
    Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing, but no previous work has explored the possibility of whether abstractive dialogue summarization can also be used as a means to boost an NLP system's performance on other important dialogue comprehension tasks. In this paper, we propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization - that can help pre-trained language models to better understand dialogues and improve their performance on important dialogue comprehension tasks. We further collect human annotations of STRUDEL summaries over 400 dialogues and introduce a new STRUDEL dialogue comprehension modeling framework that integrates STRUDEL into a graph-neural-network-based dialogue reasoning module over transformer encoder language models to improve their dialogue comprehension abilities. In our empirical experiments on two important downstream dialogue comprehension tasks - dialogue question answering and dialogue response prediction - we show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.Comment: EMNLP 202
    • …
    corecore