27 research outputs found

    Fur in Magnetospirillum gryphiswaldense Influences Magnetosomes Formation and Directly Regulates the Genes Involved in Iron and Oxygen Metabolism

    Get PDF
    Magnetospirillum gryphiswaldense strain MSR-1 has the unique capability of taking up large amounts of iron and synthesizing magnetosomes (intracellular magnetic particles composed of Fe3O4). The unusual high iron content of MSR-1 makes it a useful model for studying biological mechanisms of iron uptake and homeostasis. The ferric uptake regulator (Fur) protein plays a key role in maintaining iron homeostasis in many bacteria. We identified and characterized a fur-homologous gene (MGR_1314) in MSR-1. MGR_1314 was able to complement a fur mutant of E. coli in iron-responsive manner in vivo. We constructed a fur mutant strain of MSR-1. In comparison to wild-type MSR-1, the mutant strain had lower magnetosome formation, and was more sensitive to hydrogen peroxide and streptonigrin, indicating higher intracellular free iron content. Quantitative real-time RT-PCR and chromatin immunoprecipitation analyses indicated that Fur protein directly regulates expression of several key genes involved in iron transport and oxygen metabolism, in addition it also functions in magnetosome formation in M. gryphiswaldense

    Permian-Triassic boundary microbialites (PTBMs) in soutwest China: implications for paleoenvironment reconstruction

    Get PDF
    Permian–Triassic boundary microbialites (PTBMs) are commonly interpreted to be a sedimentary response to upwelling of anoxic alkaline seawater and indicate a harsh marine environment in the Permian–Triassic transition. However, recent studies propose that PTBMs may instead be developed in an oxic environment, therefore necessitating the need to reassess the paleoenvironment of formation of PTBMs. This paper is an integrated study of the PTBM sequence at Yudongzi, northwest Sichuan Basin, which is one of the thickest units of PTBMs in south China. Analysis of conodont biostratigraphy, mega- to microscopic microbialite structures, stratigraphic variations in abundance and size of metazoan fossils, and total organic carbon (TOC) and total sulfur (TS) contents within the PTBM reveals the following results: (1) the microbialites occur mainly in the Hindeodus parvus Zone but may cross the Permian–Triassic boundary, and are comprised of, from bottom to top: lamellar thrombolites, dendritic thrombolites and lamellar-reticular thrombolites; (2) most metazoan fossils of the microbialite succession increase in abundance upsection, so does the sizes of bivalve and brachiopod fossils; (3) TOC and TS values of microbialites account respectively for 0.07 and 0.31 wt% on average, both of which are very low. The combination of increase in abundance and size of metazoan fossils upsection, together with the low TOC and TS contents, is evidence that the Yudongzi PTBMs developed in oxic seawater. We thus dispute the previous view, at least for the Chinese sequences, of low-oxygen seawater for microbialite growth, and question whether it is now appropriate to associate PTBMs with anoxic, harsh environments associated with the end-Permian extinction. Instead, we interpret those conditions as fully oxygenated.13th Five-Year Plan National Scientific and Technology Major Project (2016ZX05004002-001); National Natural Science Foundation of China (41602166)

    Evaluation of edible mushroom Oudemansiella canarii cultivation on different lignocellulosic substrates

    Get PDF
    In this study, the mycelial growth rate, mycelial colonization time, yield, and biological efficiency of the edible mushroom Oudemansiella canarii were determined, and the effects of different substrate combinations on productivity, chemical contents and amino acids were evaluated. Lignocellulosic wastes, such as cottonseed hull, sawdust, corncob, and their combinations supplemented with 18% wheat bran and 2% lime, were used for the cultivation of O. canarii. The biological efficiency (BE) and essential amino acid content of treatment T1, which consisted of 80% cottonseed hull, were the highest among all the tested treatments. Mixtures that included sawdust, such as treatments T2 (80% sawdust), T4 (40% sawdust + 40% cottonseed hull), and T6 (40% sawdust + 40% corncob), exhibited lower yield and BE. Corncob was good for O. canarii production in terms of yield and BE, whereas the mycelial growth rate and colonization time were lower compared to those on other substrates. Comparing the BE, essential amino acids, and other traits of the six treatments, treatment T1 (80% cottonseed hull) was the best formula for O. canarii cultivation and should be extended in the future

    General synthesis and atomic arrangement identification of ordered Bi–Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity

    No full text
    Abstract Intermetallic compounds (IMCs) with fixed chemical composition and ordered crystallographic arrangement are highly desirable platforms for elucidating the precise correlation between structures and performances in catalysis. However, diffusing a metal atom into a lattice of another metal to form a controllably regular metal occupancy remains a huge challenge. Herein, we develop a general and tractable solvothermal method to synthesize the Bi-Pd IMCs family, including Bi2Pd, BiPd, Bi3Pd5, Bi2Pd5, Bi3Pd8 and BiPd3. By employing electrocatalytic CO2 reduction as a model reaction, we deeply elucidated the interplay between Bi-Pd IMCs and key intermediates. Specific surface atomic arrangements endow Bi-Pd IMCs different relative surface binding affinities and adsorption configuration for *OCHO, *COOH and *H intermediate, thus exhibiting substantially selective generation of formate (Bi2Pd), CO (BiPd3) and H2 (Bi2Pd5). This work provides a comprehensive understanding of the specific structure-performance correlation of IMCs, which serves as a valuable paradigm for precisely modulating catalyst material structures

    Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus <em>Streptococcus</em>

    Get PDF
    <div><p>A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus <em>Streptococcus.</em> We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans.</p> </div

    List of <i>Streptococcus</i> strains with whole genomes used in the current study.

    No full text
    <p>List of <i>Streptococcus</i> strains with whole genomes used in the current study.</p

    Genetic organization of T4SS.

    No full text
    <p>For <i>A. tumefaciens</i>, gene names B = <i>virB</i> and D4 = <i>virD4</i>. For <i>L. pneumophila,</i> upper-case gene names = <i>dot</i> and lower-case gene names = <i>icm</i>. Genes in orange correspondents to periplasmic lytic transglycosylase, in green ATPase, in yellow T pilus, in red channel subunit across inner membrane, in blue channel subunit across outer membrane, in grey no T4SS genes or genes with the unclear function.</p

    Hypothetical model for Type-IVC secretion system.

    No full text
    <p>The colored parts are the components of the Type-IVC secretion system system. The grey parts are objects present in the canonical T4SS of Gram-negative strains but lost in the Gram-positive Type-IVC secretion system, e.g., the outer membrane, VirB2, and VirB5.</p
    corecore