469 research outputs found

    Lifelong Sequence Generation with Dynamic Module Expansion and Adaptation

    Full text link
    Lifelong sequence generation (LSG), a problem in continual learning, aims to continually train a model on a sequence of generation tasks to learn constantly emerging new generation patterns while avoiding the forgetting of previous knowledge. Existing LSG methods mainly focus on maintaining old knowledge while paying little attention to knowledge transfer across tasks. In contrast, humans can better learn new tasks by leveraging previously acquired knowledge from similar tasks. Inspired by the learning paradigm of humans, we propose Dynamic Module Expansion and Adaptation (DMEA), which enables the model to dynamically determine the architecture for acquiring new knowledge based on task correlation and select the most similar previous tasks to facilitate adaptation to new tasks. In addition, as the learning process can easily be biased towards the current task which might cause more severe forgetting of previously learned knowledge, we propose dynamic gradient scaling to balance the learning of the current task and replayed tasks. With extensive experiments, we demonstrate that DMEA can consistently outperform existing methods in different LSG settings

    A Focused Study on Sequence Length for Dialogue Summarization

    Full text link
    Output length is critical to dialogue summarization systems. The dialogue summary length is determined by multiple factors, including dialogue complexity, summary objective, and personal preferences. In this work, we approach dialogue summary length from three perspectives. First, we analyze the length differences between existing models' outputs and the corresponding human references and find that summarization models tend to produce more verbose summaries due to their pretraining objectives. Second, we identify salient features for summary length prediction by comparing different model settings. Third, we experiment with a length-aware summarizer and show notable improvement on existing models if summary length can be well incorporated. Analysis and experiments are conducted on popular DialogSum and SAMSum datasets to validate our findings.Comment: Preprint version - ICASSP submissio

    Lokalno diskriminantna projekcija difuzije i njena primjena za prepoznavanje emocionalnog stanja iz govornog signala

    Get PDF
    The existing Diffusion Maps method brings diffusion to data samples by Markov random walk. In this paper, to provide a general solution form of Diffusion Maps, first, we propose the generalized single-graph-diffusion embedding framework on the basis of graph embedding framework. Second, by designing the embedding graph of the framework, an algorithm, namely Locally Discriminant Diffusion Projection (LDDP), is proposed for speech emotion recognition. This algorithm is the projection form of the improved Diffusion Maps, which includes both discriminant information and local information. The linear or kernelized form of LDDP (i.e., LLDDP or KLDDP) is used to achieve the dimensionality reduction of original speech emotion features. We validate the proposed algorithm on two widely used speech emotion databases, EMO-DB and eNTERFACE\u2705. The experimental results show that the proposed LDDP methods, including LLDDP and KLDDP, outperform some other state-of-the-art dimensionality reduction methods which are based on graph embedding or discriminant analysis.Postojeće metode mapiranja difuzije u uzorke podataka primjenjuju Markovljevu slučajnu šetnju. U ovom radu, kako bismo pružili općenito rješenje za mapiranje difuzije, prvo predlažemo generalizirano okruženje za difuziju jednog grafa, zasnovano na okruženju za primjenu grafova. Drugo, konstruirajući ugrađeni graf, predlažemo algoritam lokalno diskriminantne projekcije difuzije (LDDP) za prepoznavanje emocionalnog stanja iz govornog signala. Ovaj algoritam je projekcija poboljšane difuzijske mape koja uključuje diskriminantnu i lokalnu informaciju. Linearna ili jezgrovita formulacija LDDP-a (i.e., LLDDP ili KLDDP) koristi se u svrhu redukcije dimenzionalnosti originalnog skupa značajki za prepoznavanje emocionalnog stanja iz govornog signala. Predloženi algoritam testiran je nad dvama široko korištenim bazama podataka za prepoznavanje emocionalnog stanja iz govornog signala, EMO-DB i eNTERFACE\u2705. Eksperimentalni rezultati pokazuju kako predložena LDDP metoda, uključujući LLDDP i KLDDP, pokazuje bolje ponašanje od nekih drugih najsuvremenijih metoda redukcije dimenzionalnosti, zasnovanim na ugrađenim grafovima ili analizi diskriminantnosti

    Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration

    Full text link
    Underwater images are subject to intricate and diverse degradation, inevitably affecting the effectiveness of underwater visual tasks. However, most approaches primarily operate in the raw pixel space of images, which limits the exploration of the frequency characteristics of underwater images, leading to an inadequate utilization of deep models' representational capabilities in producing high-quality images. In this paper, we introduce a novel Underwater Image Enhancement (UIE) framework, named WF-Diff, designed to fully leverage the characteristics of frequency domain information and diffusion models. WF-Diff consists of two detachable networks: Wavelet-based Fourier information interaction network (WFI2-net) and Frequency Residual Diffusion Adjustment Module (FRDAM). With our full exploration of the frequency domain information, WFI2-net aims to achieve preliminary enhancement of frequency information in the wavelet space. Our proposed FRDAM can further refine the high- and low-frequency information of the initial enhanced images, which can be viewed as a plug-and-play universal module to adjust the detail of the underwater images. With the above techniques, our algorithm can show SOTA performance on real-world underwater image datasets, and achieves competitive performance in visual quality
    corecore