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The existing Diffusion Maps method brings diffusion to data samples by Markov random walk. In this paper,
to provide a general solution form of Diffusion Maps, first, we propose the generalized single-graph-diffusion
embedding framework on the basis of graph embedding framework. Second, by designing the embedding graph of
the framework, an algorithm, namely Locally Discriminant Diffusion Projection (LDDP), is proposed for speech
emotion recognition. This algorithm is the projection form of the improved Diffusion Maps, which includes both
discriminant information and local information. The linear or kernelized form of LDDP (i.e., LLDDP or KLDDP)
is used to achieve the dimensionality reduction of original speech emotion features. We validate the proposed
algorithm on two widely used speech emotion databases, EMO-DB and eNTERFACE’05. The experimental results
show that the proposed LDDP methods, including LLDDP and KLDDP, outperform some other state-of-the-art
dimensionality reduction methods which are based on graph embedding or discriminant analysis.

Key words: diffusion maps, graph embedding framework, locally discriminant diffusion projection, speech emo-
tion recognition

Lokalno diskriminantna projekcija difuzije i njena primjena za prepoznavanje emocionalnog stanja iz
govornog signala. Postojeće metode mapiranja difuzije u uzorke podataka primjenjuju Markovljevu slučajnu šet-
nju. U ovom radu, kako bismo pružili općenito rješenje za mapiranje difuzije, prvo predlažemo generalizirano
okruženje za difuziju jednog grafa, zasnovano na okruženju za primjenu grafova. Drugo, konstruirajući ugra�eni
graf, predlažemo algoritam lokalno diskriminantne projekcije difuzije (LDDP) za prepoznavanje emocionalnog
stanja iz govornog signala. Ovaj algoritam je projekcija poboljšane difuzijske mape koja uključuje diskriminantnu
i lokalnu informaciju. Linearna ili jezgrovita formulacija LDDP-a (i.e., LLDDP ili KLDDP) koristi se u svrhu
redukcije dimenzionalnosti originalnog skupa značajki za prepoznavanje emocionalnog stanja iz govornog signala.
Predloženi algoritam testiran je nad dvama široko korištenim bazama podataka za prepoznavanje emocionalnog
stanja iz govornog signala, EMO-DB i eNTERFACE’05. Eksperimentalni rezultati pokazuju kako predložena
LDDP metoda, uključujući LLDDP i KLDDP, pokazuje bolje ponašanje od nekih drugih najsuvremenijih metoda
redukcije dimenzionalnosti, zasnovanim na ugra�enim grafovima ili analizi diskriminantnosti.

Ključne riječi: mapa difuzije, okruženje s ugra�enim grafom, lokalno diskriminantna projekcija difuzije, prepoz-
navanje emocionalnog stanja iz govornog signala

1 INTRODUCTION

Speech emotion recognition (SER) [1-5] is a brand new
field of study in machine learning and affective informa-
tion processing. Speech emotion recognition may innovate
many applications in human-computer interaction (HCI).
For instance, negative emotion detection may help us au-
tomatically evaluate people’s work attitude in the service
industry. So far, many researchers believe that emotion
space, including speech emotion feature space, can be rep-
resented by a small number of features. However, most of
the traditional methods in speech emotion feature extrac-
tion are merely based on some empirical prior knowledge,

without exploring the possible bias for feature extraction.
That may lead to the problems of redundant features or
‘curse of dimensionality’. Thus, dimensionality reduction
methods are necessary in speech emotion recognition to
solve the problems above.

Currently, manifold learning methods, spectral graph
learning algorithms and some classic discriminant analy-
sis or regression methods related have been proposed to
solve dimensionality reduction problems in machine learn-
ing, e.g. LE (LPP) [6-7], LLE [8], DM (Diffusion Maps)
[9-12], Isomap [13], MFA (LDE) [14-15], SDE [16], MLE
[17] etc. In addition, some algorithm frameworks, graph
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embedding[14] and least-squares[18] frameworks, have
been proposed recently, and successfully applied to nonlin-
ear dimensionality reduction and manifold learning. In the
field of speech emotion recognition, some basic researches
[19-20] have been conducted by manifold learning based
methods.

In speech emotion recognition, compared with the clas-
sification of faces or expressions, there are a large number
of the outliers because of the original feature space. The
outliers not only influence the structure of data space, but
also affect recognition performance. The method of DM
provides a way to constrain the outliers by random walk in
the embedding graph of the data. Depending on the orig-
inal solution form of DM, we propose the extended graph
embedding framework in the condition of diffusion.

In this paper, the existing Diffusion Maps method is
reviewed first. A generalized graph embedding frame-
work, namely generalized single-graph-diffusion embed-
ding framework, is then proposed. Based on this frame-
work, we propose the method of Locally Discriminant
Diffusion Projection (LDDP), which combines graph em-
bedding framework and the process of diffusion together.
Then, the linear and kernelized forms [21] of LDDP are
adopted to achieve dimensionality reduction in speech
emotion recognition.

The rest of this paper is organized as follows. Section 2
introduces Diffusion Maps and the basic theory of the pro-
posed algorithm. In Section 3, the experiments for meth-
ods’ comparison are shown. Section 4 is the conclusions
of this paper.

2 METHODS

2.1 Diffusion Maps and Graph Embedding Frame-
work

Diffusion Maps is originally proposed in [9-10] to im-
prove learning performance by ‘coarse-graining’ structure
on samples. The method of DM brings a solution in con-
trolling noise data and it can also achieve different scales
of a given data set.

Given a symmetric matrix W ∈ <N×N , where N is
the number of training samples, related to the adjacency
matrix of the graph whose elements can reflect the weights
or similarity between each two samples. The elements of
row i and column j in Wobey: Wij = Wji ≥ 0. The de-
gree diagonal matrix is D = diag(d1, d2, ..., dN ), where
the diagonal elements di =

∑N
k=1Wik. For the conve-

nience of description, we assume that all the diagonal ele-
ments in D are positive. The transition probability matrix
is P = D−1W , which means the diffusion probability to a
give data point from each point.

The right and left eigenvector problem of P can be re-
spectively written as (1).
{
Pψj = λjψj , right eigenvector,
φTj P = λjφ

T
j (PTφj = λjφj), left eigenvector.

(1)

We assume that the number of diffusion(random walk)
steps is t = 1, 2, 3, ....

According to the idea of diffusion maps in [9-10], the
feature mapping of a certain sample x in the original fea-
ture space can be represented as the form of (2). In addi-
tion, the diffusion distance of two data points x and z is
shown as (3).

x→ Ψt(x) = Λt
[
ψ1(x), ψ2(x), ..., ψq(t)(x)

]T
= ΛtΨ(x) ,

(2)

D2
t (x, z) ≈ ‖Ψt(x)−Ψt(z)‖2 =

q(t)∑

j=1

λ2tj [ψj(x)−ψj(z)]2 ,

(3)
where Ψt(x) is the mapping of x corresponding to t-step
diffusion, while Ψ(x) is for one-step diffusion. Λ =
diag(λ1, λ2, ..., λq(t)) is the diagonal matrix with its di-
agonal elements be λ1, λ2, ..., λq(t). λ1, λ2, ..., λq(t) and
ψ1(x), ψ2(x), ..., ψq(t)(x) are the first q(t) maximal non-
trivial eigenvalues and their corresponding eigenvectors of
P respectively.

The framework of graph embedding was proposed in
[14]. The main purpose of this framework is to provide
a general framework for most of the manifold learning
or subspace learning methods in dimensionality reduction.
The graph embedding framework can be represented as
(4):

arg min
yTBy=d

∑

i 6=j
‖yi − yj‖2Wij = arg min

yTBy=d
yTLy

(B = Lp = Dp −W p or B = Λ,

L = D −W

Dp
ij =

{∑N
k=1W

p
ik, i = j

0, i 6= j

Dij =

{∑N
k=1Wik, i = j

0, i 6= j
) , (4)

where yi is the low-dimensional feature vector of sample
i after dimensionality reduction; W and W p respectively
represent intrinsic graph and penalty graph adjacency ma-
trix; L and Lp are respectively the Laplacian matrix of W
and W p. Λ is a diagonal scaling matrix.

By graph embedding, PCA, LDA, LPP etc. can be uni-
fied or transformed into this framework. The linearization
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and kernelization of them are also included in the frame-
work. The differences of the graph embedding related al-
gorithm typically depend on designing of graphs, involving
intrinsic graph and penalty graph. Therefore, label or some
other information, which reflect the relationship between
training samples can be included by constructing proper
graphs.

2.2 The Extended Graph Embedding Framework of
Diffusion Maps

In this section, the form of DM method is modified in
order to be calculated under our proposed extended graph
embedding framework.

2.2.1 Preliminary Propositions

Theorem 1 and Theorem 2, as well as their proof, are
firstly proposed below.

Theorem 1 The eigenvalues of P and P t are real, and
the eigenvectors of P and P t are only with real elements.

Theorem 2. P and P t share the same eigenvectors,
and P and P t are with the eigenvalues as Ω and Ωt re-
spectively (suppose diagonal matrix Ω is with diagonal el-
ements corresponding to the eigenvalues of P ).

Proof: Here we firstly show the proof of Theorem 1.
The eigenvalue problem of P = D−1W (W ∈ <N×N )
can be represented as (5):

Pψ = λψ ⇒ D−1Wψ = λψ . (5)

Then, (5) can be written as (6):

(D−
1
2WD−

1
2 )(D

1
2ψ) = λψ ⇒ (6)

(D−
1
2WD−

1
2 )(D

1
2ψ) = λ(D

1
2ψ) . (7)

Let D
1
2ψ = ψ̂. (8) can be drawn:

(D−
1
2WD−

1
2 )ψ̂ = λψ̂ . (8)

The symmetry of D−
1
2WD−

1
2 makes P = D−1W

maintain real eigenvalues and eigenvectors, ψ̂. With ψ̂
multiplied by D−

1
2 , the eigenvectors of P are proved

to be real. Let the eigenvalue diagonal matrix of P be
Ω = diag(λ1, λ2, ..., λN ). Let the eigenvalue diagonal
matrix of P t be Θ = diag(ρ1, ρ2, ..., ρN ).

P tξ = ρξ ⇒ (D−1W )tξ = ρξ . (9)

Like what is in (6), (9) can be converted to (10):

D−
1
2 (D−

1
2WD−

1
2 )tD

1
2 ξ = ρξ (10)

⇒ (D−
1
2WD−

1
2 )t(D

1
2 ξ) = ρ(D

1
2 ξ) . (11)

Being the same as the form for P , the eigenvalues and
eigenvectors of P t are accordingly real.

The proof of Theorem 2 is as follows.
Based on (8), P shares the same eigenvalues with

D−
1
2WD−

1
2 . Also, based on (10), P t shares the same

eigenvalues with (D−
1
2WD−

1
2 )t. The eigenvectors for P

and P t are the same if D−
1
2WD−

1
2 and (D−

1
2WD−

1
2 )t

are with the same eigenvectors. Let D−
1
2WD−

1
2 be equal

to Ŵ . The relationship of eigenvalues and eigenvectors be-
tween Ŵ and Ŵ t are easy to achieve by SVD. Therefore,
Theorem 2 is proved. �

2.2.2 Step Diffusion Maps in Graph Embedding Frame-
work

Here we only consider the right eigenvector problem
of P in (1). The method of one-step diffusion maps is to
calculate the first q(t) maximal nontrivial eigenvalues and
their corresponding eigenvectors of P , where t = 1 when
one-step diffusion is used. According to (1), they can be
written as λ1, λ2, ..., λq(t) (commonly represented as λ for
each one) and ψ1, ψ2, ..., ψq(t) (commonly represented as
ψ) respectively. Thus, based on Theorem 1, the eigenvalue
problem of P is expressed as the form of (12).

D−1Wψ = λψ ⇒ (D −W )ψ = (1− λ)Dψ . (12)

With the change of eigenvalue η = 1 − λ, (13) is con-
sequently the form of GEP (Generalized Eigenvalue Prob-
lem) for the eigenvalue problem of P .

(D −W )ψ = ηDψ . (13)

By the description in [11] or by adding premultiplica-
tion term ψT into (13), the graph embedding form of one-
step diffusion (related to P ) is shown in (14) and (15). The
first q(t) maximal nontrivial eigenvalues λ1, λ2, ..., λq(t)
(or first q(t) minimal nontrivial eigenvalues η1, η2, ..., ηq(t)
in (13)) are also needed to calculate. It is noticeable that the
orthogonal constraint is implicitly included in this transfor-
mation for one-step diffusion.

arg min
ψ

ψTLψ

ψTDψ
, (14)

arg min
ψ

ψTLψ s.t. ψTDψ = ε , (15)

where ε is a real constant value. The diagonal matrix D
and Laplacian matrix L follows:

Dij =

{∑N
k=1Wik, i = j

0, i 6= j
and L = D −W .

(16)

Obviously, (14) and (15) are both in the framework of
graph embedding as (4), yet not containing data mapping
calculation.
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2.2.3 t-Step Diffusion Maps in Graph Embedding Frame-
work

In diffusion maps, P t is related to the t-step random
walk diffusion. We can solve the diffusion maps prob-
lem by calculating the eigenvalues and eigenvectors of
P t. With the help of Theorem 1 and Theorem 2, it is
easy to solve the eigenvalue problem of P t. Therefore,
finding the first q(t) minimal eigenvalues and their corre-
sponding eigenvectors for P t is equivalent to calculating
λt1, λ

t
2, ..., λ

t
q(t) and ψ1, ψ2, ..., ψq(t) respectively for one-

step transition probability matrix P . The eigenvalue and
eigenvector, λ and ψ respectively, can be solved by GEP
in graph embedding theory, according to (14) and (15). In
other words, we can design embedding graphs, yet only for
intrinsic graph, in the framework of diffusion maps.

Figure 1 shows the equivalent calculation method of
diffusion maps. In Figure 1, the calculation of diffusion
maps can be eventually represented as the form of graph
embedding solution.

Fig. 1. The equivalent calulation forms of diffusion maps

Then, we consider the data mapping in diffusion maps.
For training samples xi (i = 1, 2, ..., N), the mapping
Ψ(xi) in (2) can be directly drawn from the eigenvectors of
P . This procedure is equal to the optimizing problems of
(14) and (15). For a certain testing sample x, we can attach
the mapping Ψ(•) which is calculated based on training
to x, as Ψ(x). Though it is available to adopt the simi-
lar method used in Isomap[13] to solve this mapping cal-
culation problem, it may bring redundant calculation and
ignore the essence of diffusion maps.

Based on the theory of graph embedding, for a testing
sample x, the linear and kernelized mapping[21] forms are
respectively shown in (17).

Ψ(x) =

{
ATx, linear mapping ,

ÃTϕT (X)ϕ(x) = ÃTKx, kernel mapping ,
(17)

where ϕ(x) is high-dimensional mapping of x. The high-
dimensional mapping for the training sample set X =

[x1, x1, ..., xN ] is ϕ(X) = [ϕ(x1), ϕ(x2), ..., ϕ(xN )]. Kx

in (17) is represented as:

Kx = ϕT (X)ϕ(x) = [ϕ(x1), ϕ(x2), ..., ϕ(xN )]Tϕ(x)
= [κ(x1, x), κ(x2, x), ..., κ(xN , x)]T

,

(18)
where κ(xi, x) is the kernel function between sample xi
and x. Then, the linear and kernelized mapping forms for
P t are consequently as (19).

x→
{

ΛtATx, linear mapping,

ΛtÃTKx, kernelized mapping.
(19)

According to the discussions above, we can draw the
algorithm in solving diffusion problems using graph em-
bedding framework.

Algorithm 1 Generalized Single-Graph-Diffusion Em-
bedding Framework.

The t-step diffusion form for graph embedding with
one graph (intrinsic graph [14]) can be solved by the fol-
lowing steps: (1) Given the adjacent matrix W of intrinsic
graph, we can get its degree matrixD and Laplacian matrix
L according to (16); (2) Solve the optimization problem
in (15) and get the first q(t) minimal nontrivial eigenval-
ues η1, η2, ..., ηq(t) and their corresponding eigenvectors,
which shares the similar form of LPP [7]. Thus, the SSS
(Small Sample Size) problem can be solved using the same
method in [7];

• For the linear mapping condition, the optimization
form is:

arg min
a

aTXLXTa s.t. aTXDXTa = 1.

(20)

• For the kernelized mapping condition, the optimiza-
tion form is:

arg min
α

αTKLKTα s.t. αTKDKTα = 1.

(21)

(3) The mapping for any sample x can be represented as
(22) in linear condition and (23) in kernelized condition.

x→ (I − Γ)tATx, (22)

x→ (I − Γ)tÃTKx, (23)

where the diagonal matrix for the eigenvalues of GEP (15)
is Γ = diag(η1, η2, ..., ηq(t)). In order to make the eigen-
values match with their corresponding eigenvectors ex-
actly, we use Lagrange multiplier method of (20) or (21) to
obtain the respective results. The linear orthogonal projec-
tion matrixA = [a1, a2, ..., aq(t)]. The kernelized orthogo-
nal projection matrix Ã = [α1, α2, ..., αq(t)]. Each column
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vectors of A and Ã is corresponding to η1, η2, ..., ηq(t) re-
spectively. �

According to Algorithm 1, diffusion in learning on a
single given graph is easy to be calculated by graph embed-
ding framework. The diffusion process means a separate
term based on the original graph embedding framework.
It is noticeable that each mapping form is assumed to be
able to completely fit every training sample in Algorithm
1. The idea of the proposed framework is shown as Figure
2, where once the training data, mapping form, embedding
graph and the number of diffusion steps are given, we can
easily draw embedding graph diffusion by using Algorithm
1. The number of diffusion steps determines the combina-
tion of eigenvectors and eigenvalues of the solutions.

2.3 Locally Discriminant Diffusion Projection
In this part, the embedding graph for diffusion is de-

signed to solve the learning problems for supervised train-
ing samples, since supervised or label information plays
an essential role when the original features are not accu-
rate enough in a certain recognition problem. To insert su-
pervised information into spectral graph learning methods,
the original form is choosing the embedding graph of LDA.
The adjacency matrix of the embedding intrinsic graph of
LDA [14] is shown as (24).

WLDA =

NC∑

c=1

1

nc
ececT , (24)

where ec represents the column vector with the elements,
which are corresponding to class c, being equal to 1, other-
wise being equal to 0. nc is the number of samples in class
c. Nc is the number of classes.

Theorem 3 The diffusion procedure has no effect on
the embedding graph of LDA.

It is obvious that the transition probability matrix of
LDA, PLDA, is equal to WLDA. Thus, P 2

LDA = PLDA
can be simply proved. By induction, P tLDA = PLDA can
be proved.

Because of the reason in Theorem 3, the embedding
graph of LDA can not be chosen as the diffusion graph
here, since the diffusion process does not affect the em-
bedding graph. However, as an important category of un-
supervised information, the local-sample information can
be added to make the embedding graph connected. There-
fore, we propose the LDDP method, with the adjacency
matrix of the embedding intrinsic graph expressed as:

WLDDP = (

NC∑

c=1

1

nc
ececT ) + τWLocal, (25)

where WLocal is the adjacency matrix for the local infor-
mation in the embedding graph, which is chosen the same

as what is in LE or LPP [6-7]. The element of row i and
column j in WLocal is:

WLocal,ij =

{
1, i ∈ Nk(j) or j ∈ Nk(i),
0, otherwise,

(26)
where Nk(i) and Nk(j)represent the k-nearest-neighbor
sets of sample i and j respectively. τ is the fixed weight
parameter of local-information embedding graph WLocal.
In (26), heat kernel mapping also can be used instead of 0-1
neighboring. The Laplacian matrix of WLocal is LLocal =
DLocal −WLocal, where the elements of DLocal are:

DLocal,ij =

{ ∑N
k=1WLocal,ik, i = j,

0, i 6= j.
(27)

By taking the embedding graph WLDDP in (25) into
Algorithm 1 (replacing the common termW ), LDDP algo-
rithm can be constructed. Also, with the projection meth-
ods of (20) and (21) respectively, the linear and kernelized
form of LDDP, LLDDP and KLDDP can be performed to
realize the process of training and test.

2.4 LDDP in Speech Emotion Recognition

It is widely admitted that compared with face recogni-
tion and speaker recognition etc., speech emotion recogni-
tion relies more on supervised information. Meanwhile,
some noise sample points, which could disturb the per-
formance of the algorithm, may also exist in the training
stage during speech emotion recognition. So the proposed
LLDDP and KLDDP methods are appropriate to be used
in the stage of dimensionality reduction in speech emotion
recognition.

With the processing of pre-emphasize and enframing
(by Hamming window) for each sample, original speech
emotion features are extracted. The features are generally
divided into 6 categories, including energy [2-5,20], pitch
[1-5,19-20], zero-cross rate [3], durance [1-3,5,20], for-
mant [2-3,5,20] and MFCC (Mel Frequency Cepstrum Co-
efficient) [2-3] features. Most of these features come from
statistics of frame features, while others are abstracted
from significant prior knowledge which is useful to rep-
resent different speech emotion states.

To make the features attached with less redundant fac-
tors which are negative for speech emotion classifica-
tion, some feature selection strategies are used to delete
some redundant features in the original speech emotion
features. Then, the proposed dimensionality reduction
methods, LLDDP and KLDDP, are separately adopted as
is discussed in Algorithm 1, using the embedding graph
WLDDP . The number of diffusion steps, t, can be decided
by cross-validation on training set with the same classifiers
which are used in test stage.
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Fig. 2. The idea of Generalized Single-Graph-Diffusion Embedding Framework

3 EXPERIMENTS

3.1 Speech Emotion Corpus

In the experiments, Berlin speech emotion corpus
(EMO-DB) [22] and the audio section of eNTERFACE’05
multimodal emotion corpus [23] are used.

The Berlin corpus includes 7 categories of speech emo-
tions, which are neutral, fear, disgust, joy(happiness),
boredom, sadness and anger in detail. The corpus adopts
10 persons (5 male and 5 female). Each one reads 10 Ger-
man short sentences. We choose 494 samples from 900
original ones in the experiments.

In the multimodal database of eNTERFACE’05, 42
subjects from different nations speak English sentences in
6 classes of emotions, including happiness, sadness, fear,
disgust, surprise and anger. We only adopt the speech part
of the database, without using the expression information.
900 audio samples by 30 different speakers are selected
from 1286 ones in the speech emotion experiments.

3.2 Preparations and Parameters

We use 3-fold crossvalidation, in which we partition
each corpus into 3 parts with nearly the same sample size.
The training and testing cross validation procedures repeat
for 25 times in the experiments with random partitioning
of samples, considering speaker facts. The detailed orig-
inal speech emotion features are show in Table 1, where
the ‘statistics’ refers to maximum, minimum, mean, me-
dian, standard deviation and range of an utterance formed
by frames.

In the feature selection stage, 35 features with rela-
tively low Fisher discriminant values are eliminated from
the 408-dimensional original speech emotion features. The
diffusion steps are chosen from 2 to 10. The kernel used
in KLDDP is Gaussian kernel, with parameters chosen
around the number of dimensions after the stage of feature

Table 1. Detailed original speech emotion features
Feature
Categories

Choices of Features

Energy fea-
tures

statistics, first-order and second-order
flux of energy sequence; statistics of en-
ergy sequence’s first-order and second-
order difference sequence;
statistics, first-order and second-order
flux of energy sequence respectively
with three different frequency bands.

Pitch(F0)
features

statistics, first-order and second-order
flux of pitch sequence; statistics of pitch
sequence’s first-order and second-order
difference sequence;
slope of voiced-frame sequence.

Zero-cross
rate features

statistics of zero-cross rate sequence and
its first-order and second-order differ-
ence sequence.

Durance
features

the number of voiced and unvoiced
frames and segments;
the longest duration of voiced and un-
voiced segments;
ratio of the number of unvoiced and
voiced frames;
ratio of the number of unvoiced and
voiced segments;
speech rate.

Formant
(F1-F3)
features

statistics of formant frequency sequence
and bandwidth sequence, as well as their
first-order and second-order difference
sequence; first-order and second-order
flux of formant frequency sequence.

MFCC fea-
tures

statistics of MFCC sequences and their
first-order difference sequence.
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selection, where the parameters are represented as ρ2 in the
kernels exp(− |xi − xj |2 /ρ2). xi and xj are the column
feature vectors of data points i and j respectively.

The selection of diffusion steps and other parameters,
including the between-graph parameter in (24) and the ker-
nel parameter, are decided according to cross-validation or
experimental results in training sets.

3.3 Experimental Results
The experiments are performed with different random

selections of training and test data sets. We show the com-
parison of the recognition performance using PCA [21],
LPP [7], MFA [14], LDA [21] and the proposed methods,
LLDDP and KLDDP in Figure 3, with different low di-
mensionality in Berlin corpus. It is obvious that the pro-
posed LLDDP outperforms the other existing methods us-
ing linear mapping especially when the dimensionality is
relatively high. In addition, the kernelized form of LDDP
can improve recognition rates on the basis of LLDDP. It
is noticeable that the best recognition rate of LDA appears
on the dimension of the number of classes because of the
practical condition, trivial eigenvectors, information in null
space and the preprocessing ways. In Figure 3, KLDDP

Fig. 3. Recognition rates of EMO-DB in low-dimensional
conditions using different methods

turns to be with inferior recognition rates when the reduced
dimensionality is low. It is caused by the character of the
Gaussian kernel with specific parameter we choose in the
experiments.

Then, the average maximal recognition rates of the al-
gorithms as well as their corresponding dimensions when
the dimensionality is no higher than 9 using the speech
emotion corpus of Berlin and eNTERFACE’05 are repre-
sented in Table 2.

According to Tabel 2 and Figure 3, the proposed al-
gorithms, LLDDP and KLDDP are with better perfor-
mances than some common subspace learning methods in

Table 2. Average maximal low-dimensional recognition
rates and their corresponding dimensions using different
methods

Methods EMO-DB
(Berlin)
Recognition
Rates / Dimen-
sions

eNTERFACE’05
Recognition
Rates / Dimen-
sions

PCA 66.16% / 9 41.24% / 9
LPP 67.50% / 9 43.49% / 9
LDA 71.96% / 7 53.41% / 5
MFA 69.90% / 9 47.64% / 9
LLDDP 74.60% / 8 55.11% / 7
KLDDP 76.59% / 8 55.62% / 8

speech emotion recognition. However, the experiments in
eNTERFACE’05 corpus are with lower recognition rates
compared with Berlin corpus mainly because of the inter-
ferences caused by more speakers and choices of classi-
fiers.

The proposed LDDP methods add weighted eigenvalue
factors of GEP to show the random-walk diffusion process.
When the diffusion steps turn to increase, each two eigen-
values with larger distance get away from each other more
than the pairs with smaller distances. Thus, the diffusion
process makes embedding graph be divided into hierarchi-
cal blocks or communities. Different numbers of diffusion
steps provide different scales of embedding graph.

By the experiments, the baseline recognition rates
of Berlin and eNTERFACE’05 corpus are 72.21% and
52.73% respectively, which are similar as the recognition
rates of the method of LDA. We can see that the improve-
ment of the recognition rates seems not obvious for the
feature extraction methods above. However, the choice
of SVM in the stage of classifier may require much more
calculation than some weak classifiers, such as k-Nearest
Neighbouring and Naive Bayesian classifiers. In addition,
the aim of feature extraction is not only the improvement
of recognition performance, but also the reduction of trans-
mission efficiency especially in poor conditions of commu-
nication channels.

4 CONCLUSIONS
This paper shows the algorithms of Diffusion Maps

in the generalized framework of graph embedding. On
the basis of this form, combining embedding graphs and
diffusion procedures together, the algorithms of Locally
Discriminant Diffusion Projection, as well as its linear
and kernelized forms, are proposed to solve speech emo-
tion recognition problems. Validated by the experiments,
the proposed algorithms can achieve relatively better per-
formance than some existing state-of-the-art methods in
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speech emotion recognition. Although the proposed meth-
ods perform well in achieving supervised ’coarse-graining’
and controlling outliers in speech emotion recognition,
many problems, such as the influences from separate
speakers or semantics may also have a negative impact on
speech emotion recognition.
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