2,503 research outputs found

    Optimization and resilience of complex supply-demand networks

    Get PDF
    Acknowledgments This work was supported by NSF under Grant No. 1441352. SPZ and ZGH were supported by NSF of China under Grants No. 11135001 and No. 11275003. ZGH thanks Prof Liang Huang and Xin-Jian Xu for helpful discussions.Peer reviewedPublisher PD

    High-Isolation Dual-Polarized Leaky Wave Antenna With Fixed Beam for Full-Duplex Millimeter-Wave Applications

    Get PDF

    STGIN: Spatial-Temporal Graph Interaction Network for Large-scale POI Recommendation

    Full text link
    In Location-Based Services, Point-Of-Interest(POI) recommendation plays a crucial role in both user experience and business opportunities. Graph neural networks have been proven effective in providing personalized POI recommendation services. However, there are still two critical challenges. First, existing graph models attempt to capture users' diversified interests through a unified graph, which limits their ability to express interests in various spatial-temporal contexts. Second, the efficiency limitations of graph construction and graph sampling in large-scale systems make it difficult to adapt quickly to new real-time interests. To tackle the above challenges, we propose a novel Spatial-Temporal Graph Interaction Network. Specifically, we construct subgraphs of spatial, temporal, spatial-temporal, and global views respectively to precisely characterize the user's interests in various contexts. In addition, we design an industry-friendly framework to track the user's latest interests. Extensive experiments on the real-world dataset show that our method outperforms state-of-the-art models. This work has been successfully deployed in a large e-commerce platform, delivering a 1.1% CTR and 6.3% RPM improvement.Comment: accepted by CIKM 202

    Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two dimensional limit

    Full text link
    We report a transport study of ultrathin Bi2Se3 topological insulators with thickness from one quintuple layer to six quintuple layers grown by molecular beam epitaxy. At low temperatures, the film resistance increases logarithmically with decreasing temperature, revealing an insulating ground state. The sharp increase of resistance with magnetic field, however, indicates the existence of weak antilocalization, which should reduce the resistance as temperature decreases. We show that these apparently contradictory behaviors can be understood by considering the electron interaction effect, which plays a crucial role in determining the electronic ground state of topological insulators in the two dimensional limit.Comment: 4 figure

    Power-Law Decay of Standing Waves on the Surface of Topological Insulators

    Full text link
    We propose a general theory on the standing waves (quasiparticle interference pattern) caused by the scattering of surface states off step edges in topological insulators, in which the extremal points on the constant energy contour of surface band play the dominant role. Experimentally we image the interference patterns on both Bi2_2Te3_3 and Bi2_2Se3_3 films by measuring the local density of states using a scanning tunneling microscope. The observed decay indices of the standing waves agree excellently with the theoretical prediction: In Bi2_2Se3_3, only a single decay index of -3/2 exists; while in Bi2_2Te3_3 with strongly warped surface band, it varies from -3/2 to -1/2 and finally to -1 as the energy increases. The -1/2 decay indicates that the suppression of backscattering due to time-reversal symmetry does not necessarily lead to a spatial decay rate faster than that in the conventional two-dimensional electron system. Our formalism can also explain the characteristic scattering wave vectors of the standing wave caused by non-magnetic impurities on Bi2_2Te3_3.Comment: 4 pages, 3 figure
    corecore