1,894 research outputs found
Nondestructive Measurement Material Characterization of Thermal Sprayed Nickel Aluminum Coatings by using Laser Ultrasound Technique
AbstractThis research focused on characterization of mechanical properties in Nickel-Aluminum coating with different thermal technique and processing parameters at high temperature environment up to 295°C. With the laser ultrasound technique (LUT), guided acoustic waves are generated to propagate on the Ni-Al sprayed coatings. By measuring dispersive phase velocity followed by SCE-UA inversion algorithm. The Young's modulus of coatings which fabricated by HVOF technique is higher than APS technique. This technique is potentially useful to probe the material characterization at high temperature environment in a remote and non-destructive way
Knowledge Sharing in Virtual Community: The Comparison between Contributors and Lurkers
Internet-based virtual communities are growing with an unprecedented rate. Virtual communities have been viewed as platforms for sharing knowledge. The present study proposed an integrated model by investigating social capital and motivational factors that would influence the knowledge sharing attitude of members. Data were collected from 207 professional virtual community users (including 53 contributors and 154 lurkers). The results showed that trust and pro-sharing norms mediate the relationship between shared understanding and knowledge sharing attitude. Enjoy helping, commitment, and community-related outcome expectations enhance contributors’ attitudes toward knowledge sharing. When lurkers perceived more reciprocity in their communities and expect more community-related outcome, they incline to sharing knowledge with others. The implications of these results are discussed
Learnable Mixed-precision and Dimension Reduction Co-design for Low-storage Activation
Recently, deep convolutional neural networks (CNNs) have achieved many
eye-catching results. However, deploying CNNs on resource-constrained edge
devices is constrained by limited memory bandwidth for transmitting large
intermediated data during inference, i.e., activation. Existing research
utilizes mixed-precision and dimension reduction to reduce computational
complexity but pays less attention to its application for activation
compression. To further exploit the redundancy in activation, we propose a
learnable mixed-precision and dimension reduction co-design system, which
separates channels into groups and allocates specific compression policies
according to their importance. In addition, the proposed dynamic searching
technique enlarges search space and finds out the optimal bit-width allocation
automatically. Our experimental results show that the proposed methods improve
3.54%/1.27% in accuracy and save 0.18/2.02 bits per value over existing
mixed-precision methods on ResNet18 and MobileNetv2, respectively
The Impacts Of Presentation Modes And Product Involvements On “Line” Short Message Service (SMS) Advertising Effectiveness
In today’s ubiquitous commerce (UC) era, short message service (SMS) advertisement has played an important role in the world of marketing. Convenience and economical reasons influence SMS usage frequency along with social involvement to influence attitudes towards SMS advertising. SMS advertising creates numerous opportunities for the marketers in promoting their products effectively. Adopting the competition for attention theory as the theoretical framework, we developed hypotheses to investigate the influences of presentation mode and involvement on SMS advertising performance (recall of advertising information). An experiment was conducted to examine the effects of three types of information presentation modes (text-only, image-text, and emoji-text) in the contexts of two product types (high- versus low-involvement products) in the “LINE” SMS environment. Specifically, in this current study, we allocate participants to six experimental environments (text-only for high-involvement products, text-only for low-involvement products, image-text for high-involvement products, image-text for low-involvement products, emoji-text for high-involvement products and emoji-text for low-involvement products) randomly to collected empirical data to examine the proposed hypotheses. The research findings are expected to provide instrumental guidelines for the practitioners to better achieve the goals of ads in the “LINE” SMS environment. Also, the empirical results may provide insights into the research of advertising interface design of SMS and integrating efforts from cognitive science and vision research to understand users’ involvement of SMS advertising processes
Seismic analysis of the condensate storage tank in a nuclear power plant
Following the nuclear power plant accident in Fukushima Japan, seismic capacity evaluation has become a crucial issue in combination building safety. Condensate storage tanks are designed to supplies water to the condensate transfer pumps, the control rod drive hydraulic system pumps, and the condenser makeup. A separate connection to the condensate storage tank is used to supply water for the high pressure coolant injection system, reactor core isolation cooling system, and core spray system pumps. A condensate storage tank is defined as a seismic class I structure, playing the important role of providing flow to the operational system and the required static head for the suction of the condensate transfer pumps and the normal supply pump. According to the latest nuclear safety requirements, soil structure interaction must be considered in all seismic analyses. This study aims to rebuild the computer model of condensate storage tanks in Taiwan using the SAP 2000 program in conjunction with the lumped mass stick model and to evaluate the soil structure interaction by employing the SASSI 2000 program. The differences between the results with the soil structure interaction and spring model are compared via natural frequency and response spectrum curves. This computer model enables engineers to rapidly evaluate the safety margin of condensate storage tank following the occurrence of earthquakes or tsunamis
A preliminary study on the dynamic friction behavior of a one-third scale-down vertical cylindrical cask
In Taiwan, the capacities of spent fuel pools for temporary storage in nuclear power plant will reach depletion soon, and the site of final disposal facility is still to be decided. Therefore, the installation of dry-type interim storage facilities is urgent. The dry storage systems in Taiwan utilize a freestanding cask and design to non-anchored to the foundation pad. It is necessary to establish the simulation techniques for the non-anchored structure, such as the dry storage cask, for the reasonable assessment of its seismic behavior when the earthquake hit. This study is cast a 1/3 scale-down pedestal specimen of the INER-dry storage cask system, which were conducted to acquire the actual friction coefficient at the cask/pad interface as well as the effect of normal stress and sliding rate on it. Based on the results of cyclic loading testing, the cyclic frequency almost had no influence on the friction coefficient but the friction coefficient increased with the normal stress increased. Apparent rocking of the cask was induced at a higher friction coefficient, while sliding dominated the cask motion at a lower one. In addition, the cast motions were almost purely sliding and the range of the friction coefficient was between 0.60 and 0.73 under various compositions of dry storage cask system
Designing primers and evaluation of the efficiency of propidium monoazide – Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius
AbstractThe purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4–5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable
Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation.
PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention
Distributed Training Large-Scale Deep Architectures
Scale of data and scale of computation infrastructures together enable the
current deep learning renaissance. However, training large-scale deep
architectures demands both algorithmic improvement and careful system
configuration. In this paper, we focus on employing the system approach to
speed up large-scale training. Via lessons learned from our routine
benchmarking effort, we first identify bottlenecks and overheads that hinter
data parallelism. We then devise guidelines that help practitioners to
configure an effective system and fine-tune parameters to achieve desired
speedup. Specifically, we develop a procedure for setting minibatch size and
choosing computation algorithms. We also derive lemmas for determining the
quantity of key components such as the number of GPUs and parameter servers.
Experiments and examples show that these guidelines help effectively speed up
large-scale deep learning training
- …