12 research outputs found

    Maritime threat response

    Get PDF
    This report was prepared by Systems Engineering and Analysis Cohort Nine (SEA-9) Maritime Threat Response, (MTR) team members.Background: The 2006 Naval Postgraduate School (NPS) Cross-Campus Integrated Study, titled “Maritime Threat Response” involved the combined effort of 7 NPS Systems Engineering students, 7 Singaporean Temasek Defense Systems Institute (TDSI) students, 12 students from the Total Ship Systems Engineering (TSSE) curriculum, and numerous NPS faculty members from different NPS departments. After receiving tasking provided by the Wayne E. Meyer Institute of Systems Engineering at NPS in support of the Office of the Assistant Secretary of Defense for Homeland Defense, the study examined ways to validate intelligence and respond to maritime terrorist attacks against United States coastal harbors and ports. Through assessment of likely harbors and waterways to base the study upon, the San Francisco Bay was selected as a representative test-bed for the integrated study. The NPS Systems Engineering and Analysis Cohort 9 (SEA-9) Maritime Threat Response (MTR) team, in conjunction with the TDSI students, used the Systems Engineering Lifecycle Process (SELP) [shown in Figure ES-1, p. xxiii ] as a systems engineering framework to conduct the multi-disciplinary study. While not actually fabricating any hardware, such a process was well-suited for tailoring to the team’s research efforts and project focus. The SELP was an iterative process used to bound and scope the MTR problem, determine needs, requirements, functions, and to design architecture alternatives to satisfy stakeholder needs and desires. The SoS approach taken [shown in Figure ES-2, p. xxiv ]enabled the team to apply a systematic approach to problem definition, needs analysis, requirements, analysis, functional analysis, and then architecture development and assessment.In the twenty-first century, the threat of asymmetric warfare in the form of terrorism is one of the most likely direct threats to the United States homeland. It has been recognized that perhaps the key element in protecting the continental United States from terrorist threats is obtaining intelligence of impending attacks in advance. Enormous amounts of resources are currently allocated to obtaining and parsing such intelligence. However, it remains a difficult problem to deal with such attacks once intelligence is obtained. In this context, the Maritime Threat Response Project has applied Systems Engineering processes to propose different cost-effective System of Systems (SoS) architecture solutions to surface-based terrorist threats emanating from the maritime domain. The project applied a five-year time horizon to provide near-term solutions to the prospective decision makers and take maximum advantage of commercial off-the-shelf (COTS) solutions and emphasize new Concepts of Operations (CONOPS) for existing systems. Results provided insight into requirements for interagency interactions in support of Maritime Security and demonstrated the criticality of timely and accurate intelligence in support of counterterror operations.This report was prepared for the Office of the Assistant Secretary of Defense for Homeland DefenseApproved for public release; distribution is unlimited

    Food and distinction in Hong Kong families

    No full text
    published_or_final_versionSociologyMasterMaster of Philosoph

    Viable short-term directed energy weapon naval solutions: a systems analysis of current prototypes

    Get PDF
    With conventional weapons nearing their peak capability, the need to identify alternative war fighting solutions suggests a look at Directed Energy Weapons (DEWs). The goal is to change the means by which warfare is conducted to improve operational efficiencies and overall effectiveness. The Naval Postgraduate School Systems Engineering and Analysis (SEA-19B) Capstone project team examined how existing directed energy technologies can provide performance across multiple warfare area domains and mission subsets for the U.S. Navy. The aim was to identify and characterize the capability gaps with conventional weapons systems, produce a coherent vision of naval missions that incorporate DEWs, and generate a roadmap for a DEW fleet. By conducting a thorough Analysis of Alternatives based on system performance, integration, schedule, and cost, the project team identified that the Tactical Laser System (with a laser beam power of 10 kW) provided the best overall capability to defend surface combatants, although none of the analyzed DEWs have the capability to replace a current conventional weapon. The Active Denial System (microwave) provided a niche capability in the Anti-Terrorism/Force Protection mission set.http://archive.org/details/viableshorttermd1094534734Approved for public release; distribution is unlimited

    Maritime Interdiction Operations in Logistically Barren Environments

    Get PDF
    Includes supplementary materialThis report contains analysis that shows that existing technology exists to improve Maritime Interdiction Operations (MIO) by approximately 30%. Furthermore, analysis contained herein will aid MIO planning for future operations. Since MIOs are an inherently dangerous, but necessary activity with far reaching implications to theater political and economic dynamics, this improvement is of great interest. MIO is a Naval solution to the problems of smuggling weapons, explosives, people and narcotics. MIO, when employed correctly has the potential to save lives and limit economic/political damage.N
    corecore