40 research outputs found

    Angular dependence of resistivity in the superconducting state of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals

    Full text link
    We report the results of angle dependent resistivity of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy Γ\Gamma can be determined for different temperatures. It is found that Γ(T)\Gamma(T) increases slowly with decreasing temperature, varying from Γ\Gamma \simeq 5.48 at T=50 K to Γ\Gamma \simeq 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.Comment: 7 pages, 4 figure

    Point contact Andreev reflection spectroscopy of NdFeAsO_0.85

    Full text link
    The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial information such as the gap value and possibly the number of energy gaps involved. For the oxygen deficient NdFeAsO0.85 with a Tc of 45.5K, we show that there is clearly a gap value at 4.2K that is of the order of 7meV, consistent with previous studies on oxypnictides with lower Tc. Additionally, taking the spectra as a function of gold tip contact pressure reveals important changes in the spectra which may be indicative of more complex physics underlying this structure.Comment: 11 pages, 3 figures. New references included, extra discussion. This version is accepted in Superconductor Science and Technolog

    Does or did the supernova remnant Cassiopeia A operate as a PeVatron?

    Full text link
    For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ100E_\gamma \geq 100~TeV) γ\gamma-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ

    Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A

    Full text link
    The diffuse Galactic γ\gamma-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse γ\gamma-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15<l<12515^{\circ}<l<125^{\circ}, b<5|b|<5^{\circ}) and outer (125<l<235125^{\circ}<l<235^{\circ}, b<5|b|<5^{\circ}) Galactic plane are detected with 29.1σ29.1\sigma and 12.7σ12.7\sigma significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain (E>10E>10~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of 2.99±0.04-2.99\pm0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of 3\sim3 than the prediction. A similar spectrum with an index of 2.99±0.07-2.99\pm0.07 is found in the outer Galaxy region, and the absolute flux for 10E6010\lesssim E\lesssim60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary fil

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Search for a light exotic particle in J/psi radiative decays

    Get PDF
    Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. Only one event is seen in the mass region below 255 MeV/c^2 and this has a mu^+mu^- mass of 213.3 MeV/c^2 and the product branching fraction upper limit 5x10^{-7}.Comment: 7 pages, 3 figures, submitted to Physical Review

    The First LHAASO Catalog of Gamma-Ray Sources

    No full text
    We present the first catalog of very-high-energy and ultra-high-energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory. The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array from 2021 March to 2022 September and 933 days of data recorded by the Kilometer Squared Array from 2020 January to 2022 September. This catalog represents the main result from the most sensitive large coverage gamma-ray survey of the sky above 1 TeV, covering decl. from −20° to 80°. In total, the catalog contains 90 sources with an extended size smaller than 2° and a significance of detection at >5 σ . Based on our source association criteria, 32 new TeV sources are proposed in this study. Among the 90 sources, 43 sources are detected with ultra-high energy ( E > 100 TeV) emission at >4 σ significance level. We provide the position, extension, and spectral characteristics of all the sources in this catalog

    Ancient and Modern Literature Research on Danshen Prescriptions

    No full text

    Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications

    No full text
    corecore