47,170 research outputs found

    Analyticity and crossing symmetry of the eikonal amplitudes in gauge theories

    Full text link
    After a brief review and a more refined analysis of some relevant analyticity properties (when going from Minkowskian to Euclidean theory) of the high-energy parton-parton and hadron-hadron scattering amplitudes in gauge theories, described nonperturbatively, in the eikonal approximation, by certain correlation functions of two Wilson lines or two Wilson loops near the light cone, we shall see how these same properties lead to a nice geometrical interpretation of the crossing symmetry between quark-quark and quark-antiquark eikonal amplitudes and also between loop-loop eikonal amplitudes. This relation between Minkowskian-to-Euclidean analyticity properties and crossing symmetry is discussed in detail and explicitly tested in the first orders of perturbation theory. Some nonperturbative examples existing in the literature are also discussed.Comment: Completely revised version with new comments, new references and new figures; 37 pages + 5 figure

    Viscous Effects on Elliptic Flow and Shock Waves

    Full text link
    Fast thermalization and a strong buildup of elliptic flow of QCD matter as found at RHIC are understood as the consequence of perturbative QCD (pQCD) interactions within the 3+1 dimensional parton cascade BAMPS. The main contributions stem from pQCD bremsstrahlung 232 \leftrightarrow 3 processes. By comparing to Au+Au data of the flow parameter v2v_2 as a function of participation number the shear viscosity to entropy ratio is dynamically extracted, which lies in the range of 0.08 and 0.2, depending on the chosen coupling constant and freeze out condition. Furthermore, first simulations on the temporal propagation of dissipative shock waves are given. The cascade can either simulate true ideal shocks as well as initially diluted, truely viscous shocks, depending on the employed cross sections or mean free path, respectively.Comment: 7 pages, 8 figures, to appear in the proceedings of the 2008 Erice School on Nuclear Physics, Sicil

    Low relaxation rate in a low-Z alloy of iron

    Full text link
    The longest relaxation time and sharpest frequency content in ferromagnetic precession is determined by the intrinsic (Gilbert) relaxation rate \emph{GG}. For many years, pure iron (Fe) has had the lowest known value of G=57 MhzG=\textrm{57 Mhz} for all pure ferromagnetic metals or binary alloys. We show that an epitaxial iron alloy with vanadium (V) possesses values of GG which are significantly reduced, to 35±\pm5 Mhz at 27% V. The result can be understood as the role of spin-orbit coupling in generating relaxation, reduced through the atomic number ZZ.Comment: 14 pages, 4 figure

    Spin relaxation in nn-type ZnO quantum wells

    Full text link
    We perform an investigation on the spin relaxation for nn-type ZnO (0001) quantum wells by numerically solving the kinetic spin Bloch equations with all the relevant scattering explicitly included. We show the temperature and electron density dependence of the spin relaxation time under various conditions such as impurity density, well width, and external electric field. We find a peak in the temperature dependence of the spin relaxation time at low impurity density. This peak can survive even at 100 K, much higher than the prediction and measurement value in GaAs. There also exhibits a peak in the electron density dependence at low temperature. These two peaks originate from the nonmonotonic temperature and electron density dependence of the Coulomb scattering. The spin relaxation time can reach the order of nanosecond at low temperature and high impurity density.Comment: 6 pages, 4 figure

    Phenomenological Analysis of D Meson Lifetimes

    Get PDF
    The QCD-based operator-product-expansion technique is systematically applied to the study of charmed meson lifetimes. We stress that it is crucial to take into account the momentum of the spectator light quark of charmed mesons, otherwise the destructive Pauli-interference effect in D+D^+ decays will lead to a negative decay width for the D+D^+. We have applied the QCD sum rule approach to estimate the hadronic matrix elements of color-singlet and color-octet 4-quark operators relevant to nonleptonic inclusive DD decays. The lifetime of Ds+D_s^+ is found to be longer than that of D0D^0 because the latter receives a constructive WW-exchange contribution, whereas the hadronic annihilation and leptonic contributions to the former are compensated by the Pauli interference. We obtain the lifetime ratio τ(Ds+)/τ(D0)\tau(D_s^+)/\tau(D^0) 1.08±0.04\approx 1.08\pm 0.04, which is larger than some earlier theoretical estimates, but still smaller than the recent measurements by CLEO and E791.Comment: 14 pages, 3 figure

    Do strange stars exist in the Universe?

    Get PDF
    Definitely, an affirmative answer to this question would have implications of fundamental importance for astrophysics (a new class of compact stars), and for the physics of strong interactions (deconfined phase of quark matter, and strange matter hypothesis). In the present work, we use observational data for the newly discovered millisecond X-ray pulsar SAX J1808.4-3658 and for the atoll source 4U 1728-34 to constrain the radius of the underlying compact stars. Comparing the mass-radius relation of these two compact stars with theoretical models for both neutron stars and strange stars, we argue that a strange star model is more consistent with SAX J1808.4-3658 and 4U 1728-34, and suggest that they are likely strange star candidates.Comment: In memory of Bhaskar Datta. -- Invited talk at the Pacific Rim Conference on Stellar Astrophysics (Hong Kong, aug. 1999

    Accretion Disk Temperatures and Continuum Colors in QSOs

    Get PDF
    Accretion disks around supermassive black holes are widely believed to be the dominant source of the optical-ultraviolet continuum in many classes of active galactic nuclei (AGN). We study here the relationship between the continuum colors of AGN and the characteristic accretion disk temperature (T_max). Based on NLTE models of accrection disks in AGN computed as described by Hubeny et al. (2000), we find that continuum intensity ratios for several pairs of wavelengths between 1350 and 5100 A should show a trend of bluer colors for higher T_max, notwithstanding random disk inclinations. We compare this theoretical expectation with observed colors of QSOs in the Sloan Digital Sky Survey,deriving black hole mass and thence T_max from the width of the Mg II broad emission line. The observed colors generally do not show the expected trend and in some cases show a reverse trend of redder colors with increasing T_max. The cause of this discrepancy does not appear to be dust reddening or galaxy contamination but may relate to the accretion rate, as the offset objects are accreting above ~30 % of the Eddington limit. The derived disk temperature depends primarily on line width, with little or no dependence on luminosity.Comment: 7 pages, 7 figures, accepted for publication in ApJ, uses emulateapj.cl
    corecore