32,301 research outputs found

    Semi-Competing Risks on A Trivariate Weibull Survival Model

    Full text link
    A setting of a trivairate survival function using semi-competing risks concept is proposed. The Stanford Heart Transplant data is reanalyzed using a trivariate Weibull distribution model with the proposed survival function

    Effect of surface asperity on elastohydrodynamic lubrication

    Get PDF
    The important aspects of elastohydrodynamic lubrication, with a single, one-dimensional asperity, have been found by solving numerically the coupled transient Reynolds equation and the elasticity equation. Even though the assumption of a single asperity is highly ideal, this study sheds some light on the effect of surface roughness on elastohydrodynamic lubrication. The results show that the film pressure tends to increase more than the steady state pressure, and in particular, the increase in pressure reaches a maximum as the asperity approaches the inlet of the contact region. The asperity height and the pressure increase above the steady state pressure are closely related to each other; the higher the asperity height, the larger the pressure increase. In the pure rolling case, it has been found that a local pressure peak is not developed. However, in the cases of sliding and rolling, a small, local pressure peak is developed on the pressure profile when the asperity moves into the contact region. In general, the overall film thickness profile increases with increasing asperity height, but is not significantly affected by the asperity width. Moreover, the slope of the overall film thickness profile for the transient cases is much greater than the steady state profile, which is approximately constant across the contact width. The increase in the center film thickness also depends upon the width and height of the asperity

    Soliton Resonances for MKP-II

    Get PDF
    Using the second flow - the Derivative Reaction-Diffusion system, and the third one of the dissipative SL(2,R) Kaup-Newell hierarchy, we show that the product of two functions, satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimension with negative dispersion (MKP-II). We construct Hirota's bilinear representation for both flows and combine them together as the bilinear system for MKP-II. Using this bilinear form we find one and two soliton solutions for the MKP-II. For special values of parameters our solution shows resonance behaviour with creation of four virtual solitons. Our approach allows one to interpret the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.Comment: 11 pages, 2 figures, Talk on International Conference "Nonlinear Physics. Theory and Experiment. III", 24 June-3 July, 2004, Gallipoli(Lecce), Ital
    corecore