102 research outputs found

    Autophosphorylated CaMKIIα Acts as a Scaffold to Recruit Proteasomes to Dendritic Spines

    Get PDF
    The molecular mechanisms regulating the ubiquitin proteasome system (UPS) at synapses are poorly understood. We report that CaMKIIα—an abundant postsynaptic protein kinase—mediates the activity-dependent recruitment of proteasomes to dendritic spines in hippocampal neurons. CaMKIIα is biochemically associated with proteasomes in the brain. CaMKIIα translocation to synapses is required for activity-induced proteasome accumulation in spines, and is sufficient to redistribute proteasomes to postsynaptic sites. CaMKIIα autophosphorylation enhances its binding to proteasomes and promotes proteasome recruitment to spines. In addition to this structural role, CaMKIIα stimulates proteasome activity by phosphorylating proteasome subunit Rpt6 on Serine 120. However, CaMKIIα translocation, but not its kinase activity, is required for activity-dependent degradation of polyubiquitinated proteins in spines. Our findings reveal a scaffolding role of postsynaptic CaMKIIα in activity-dependent proteasome redistribution, which is commensurate with the great abundance of CaMKIIα in synapses.Howard Hughes Medical Institute (Investigator

    Rapid analysis of N-methylpyrrolidine in cefepime with thermal desorption ion mobility spectrometry

    Get PDF
    N-methyl-pyrrolidine (NMP) a potential impurity in the cephalosporin antibiotic cefepime is analysed using a rapid thermal desorption – ion mobility spectrometry (TD-IMS) method. The thermal desorption approach is shown to be capable of rapidly extracting NMP from the cefepime at 80 °C without causing thermal degradation of the cefepime. The ion mobility method has an analysis time of 1 min and demonstrates good linearity over a range from 0.3–3.0 μg ml−1 of NMP, with limits of detection and quantification of 0.056 and 0.1875 μg ml−1 respectively. The developed method was applied to the analysis of a cefepime sample and determined that NMP was present in a cefepime sample at a level of 0.0376 % with a percentage relative standard deviation (n = 6) of 3.2 %. This was compared with a LC-UV method which was in close agreement measuring NMP at 0.0384 % in the cefepime sample with a percentage RSD (n = 6) of 5.7 %. These results show that the TD-IMS method gives comparable data to the established LC methods and demonstrates the potential of TD-IMS for rapid measurement of volatile compounds in pharmaceutical matrices

    Proteomic Analysis of Hippocampal Dentate Granule Cells in Frontotemporal Lobar Degeneration: Application of Laser Capture Technology

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is the most common cause of dementia with pre-senile onset, accounting for as many as 20% of cases. A common subset of FTLD cases is characterized by the presence of ubiquitinated inclusions in vulnerable neurons (FTLD-U). While the pathophysiological mechanisms underlying neurodegeneration in FTLD-U have not yet been elucidated, the presence of inclusions in this disease indicates enhanced aggregation of one or several proteins. Moreover, these inclusions suggest altered expression, processing, or degradation of proteins during FTLD-U pathogenesis. Thus, one approach to understanding disease mechanisms is to delineate the molecular changes in protein composition in FTLD-U brain. Using a combined approach consisting of laser capture microdissection (LCM) and high-resolution liquid chromatography-tandem mass spectrometry (LC–MS/MS), we identified 1252 proteins in hippocampal dentate granule cells excised from three post-mortem FTLD-U and three unaffected control cases processed in parallel. Additionally, we employed a labeling-free quantification technique to compare the abundance of the identified proteins between FTLD-U and control cases. Quantification revealed 54 proteins with selective enrichment in FTLD-U, including TAR–DNA binding protein 43 (TDP-43), a recently identified component of ubiquitinated inclusions. Moreover, 19 proteins were selectively decreased in FTLD-U. Subsequent immunohistochemical analysis of TDP-43 and three additional protein candidates suggests that our proteomic profiling of FTLD-U dentate granule cells reveals both inclusion-associated proteins and non-aggregated disease-specific proteins. Application of LCM is a valuable tool in the molecular analysis of complex tissues, and its application in the proteomic characterization of neurodegenerative disorders such as FTLD-U may be used to identify proteins altered in disease

    Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling

    Get PDF
    SET domain containing 6 (SETD6) monomethylates the RelA subunit of nuclear factor kappa B (NF-κB). The ankyrin repeats of G9a-like protein (GLP) recognizes RelA monomethylated at Lys310. Adjacent to Lys310 is Ser311, a known phosphorylation site of RelA. Ser311 phosphorylation inhibits Lys310 methylation by SETD6 as well as binding of Lys310me1 by GLP. The structure of SETD6 in complex with RelA peptide containing the methylation site, in the presence of S-adenosyl-l-methionine, reveals a V-like protein structure and suggests a model for NF-κB binding to SETD6. In addition, structural modeling of the GLP ankyrin repeats bound to Lys310me1 peptide provides insight into the molecular basis for inhibition of Lys310me1 binding by Ser311 phosphorylation. Together, these findings provide a structural explanation for a key cellular signaling pathway centered on RelA Lys310 methylation, which is generated by SETD6 and recognized by GLP, and incorporate a methylation–phosphorylation switch of adjacent lysine and serine residues. Finally, SETD6 is structurally similar to the Rubisco large subunit methyltransferase. Given the restriction of Rubisco to plant species, this particular appearance of the protein lysine methyltransferase has been evolutionarily well conserved

    The <i>Sinocyclocheilus</i> cavefish genome provides insights into cave adaptation

    Get PDF
    BACKGROUND: An emerging cavefish model, the cyprinid genus Sinocyclocheilus, is endemic to the massive southwestern karst area adjacent to the Qinghai-Tibetan Plateau of China. In order to understand whether orogeny influenced the evolution of these species, and how genomes change under isolation, especially in subterranean habitats, we performed whole-genome sequencing and comparative analyses of three species in this genus, S. grahami, S. rhinocerous and S. anshuiensis. These species are surface-dwelling, semi-cave-dwelling and cave-restricted, respectively. RESULTS: The assembled genome sizes of S. grahami, S. rhinocerous and S. anshuiensis are 1.75 Gb, 1.73 Gb and 1.68 Gb, respectively. Divergence time and population history analyses of these species reveal that their speciation and population dynamics are correlated with the different stages of uplifting of the Qinghai-Tibetan Plateau. We carried out comparative analyses of these genomes and found that many genetic changes, such as gene loss (e.g. opsin genes), pseudogenes (e.g. crystallin genes), mutations (e.g. melanogenesis-related genes), deletions (e.g. scale-related genes) and down-regulation (e.g. circadian rhythm pathway genes), are possibly associated with the regressive features (such as eye degeneration, albinism, rudimentary scales and lack of circadian rhythms), and that some gene expansion (e.g. taste-related transcription factor gene) may point to the constructive features (such as enhanced taste buds) which evolved in these cave fishes. CONCLUSION: As the first report on cavefish genomes among distinct species in Sinocyclocheilus, our work provides not only insights into genetic mechanisms of cave adaptation, but also represents a fundamental resource for a better understanding of cavefish biology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0223-4) contains supplementary material, which is available to authorized users

    Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization
    corecore